Page 68 - Çevre Şehir İklim İngilizce - Sayı 4
P. 68

Urban Transformation Forecasts with Artificial Intelligence
                                        Based Algorithms

               Table 4. The equation used for achieving the number of flat variable and basic
                             functions obtained from the MARS method
            Basic functions
            BF1 = max( 0, N - 0,774089);   BF2 = max( 0, 0,774089 - N);
            BF4 = max( 0, 0,753556 - N);  BF6 = max( 0, 0,82127 - N);
            BF8 = max( 0, 0,148466 - F) * BF4; BF9 = max( 0, Y - 0,1) *
            BF8;
            BF11 = max( 0, F - 0,229717) * BF6;
            F_daire_sayısı = 0,429926 - 0,636509 * BF1 - 0,0996053 * BF2 - 0,101585 * BF4 - 0,0854713 * BF6
            + 35,7033 * BF9 - 0,161584 * BF11;


            Table 5. The relative importance of the independent variables used for the estimation
               of the number of flats variable obtained from the MARS and TreeNet methods

              MARS                               TreeNet
              N 100     ||||||||||||||||||||||||||||||||||||||||||||||||  G 100  ||||||||||||||||||||||||||||||||||||||||||
              Y   57.37  |||||||||||||||||||||||||||  F   94.97  ||||||||||||||||||||||||||||||||||||||||
              F   51.17  ||||||||||||||||||||||||  N 87,19  ||||||||||||||||||||||||||||||||||||
                                                 E   85.44  ||||||||||||||||||||||||||||||||||||
                                                 Y   68.46  ||||||||||||||||||||||||||||
               In these tables, N, Y, F, G and E represent the values of population, period
            during the year, interest, gross domestic product and inflation, respectively.
            Table 5 shows that population, period during the year and interest variables
            were effective among the independent variables in the equations obtained for
            the MARS method, while all variables were effective in the equation achieved
            for the TreeNet method. The variable with the highest relative importance for
            the MARS method was the population variable, while the variable with the
            highest relative importance in the TreeNet method was the gross domestic
            product.

               The performance statistics achieved for the training, verification and test
            data sets of ANN-based models established to predict the number of flats
            variable are given in Table 6 for four different neuron numbers (5, 10, 15 and
            20). Tests were conducted by trial and error for the neuron numbers given in
            the table, and the results of the models that gave the highest performance
            values were presented within the scope of the thesis.








                                                                 Year 2 / Issue 4 / July 2023  57
   63   64   65   66   67   68   69   70   71   72   73