Page 73 - Çevre Şehir İklim İngilizce - Sayı 4
P. 73

Hacı Abdullah Uçan - Tayfun Dede - Sinan Nacar


             Table 10. The relative importance of the independent variables used for the estimation
               of the number of licenses variable obtained from the MARS andTreeNet methods

              MARS                             TreeNet
             N   100    ||||||||||||||||||||||||||||||||||||||||||||||||  G  100  ||||||||||||||||||||||||||||||||||||||||||
             Y   35.24  ||||||||||||||||        E    97.3   |||||||||||||||||||||||||||||||||||||||||
             G   15.28  |||||||                 F    96.8   |||||||||||||||||||||||||||||||||||||||||
                                                N    83.5   |||||||||||||||||||||||||||||||||||
                                                Y    66.96  ||||||||||||||||||||||||||||

               Table 10 shows that population, period during the year and gross domestic
            product  were  effective  among  the  independent  variables  in  the  equations
            obtained  for  the  MARS  method,  while  all  variables  were  effective  in  the
            equation  achieved  for  the  TreeNet  method.  The  variable  with  the  highest
            relative importance for the MARS method was the population variable, while
            the variable with the highest relative importance in the TreeNet method was
            the gross domestic product.
               The performance statistics obtained for the training, verification and test
            data sets of ANN-based models developed using a mixed selection data set
            and established to predict the number of licenses variable are given in Table 11
            for four different neuron numbers. Tests were conducted by trial and error for
            the neuron numbers given in the table, and the results of the models that gave
            the highest performance values were presented within the scope of the thesis.

            Table 11. Performance statistics of the training, verification and test data sets of ANN-
                      based models developed for the number of licenses variable


             Training   ANN_5  ANN_10 ANN_15 ANN_20 GWO_5 GWO_10 GWO_15 GWO_20
             RMSE(pcs.)  2956   2858   2908    2929   9939   15480   5800   9309
             MAE(pcs.)   2404   2252   2287    2337   7444   12485   4509   7070
             NS          0,85   0,86    0,86   0,86   -0,67  -3,04   0,43   -0,46
             Doğrulama  ANN_5  ANN_10 ANN_15 ANN_20 GWO_5 GWO_10 GWO_15 GWO_20
             RMSE (pcs.)  7589  7918   7949    7890   5300   16887   7498   5441
             MAE(pcs.)   5325   5526   5762    5451   4346   12880   5256   4444
             NS          0,41   0,36   0,35    0,36   0,71   -1,92   0,42   0,70
             Test       ANN_5  ANN_10 ANN_15 ANN_20 GWO_5 GWO_10 GWO_15 GWO_20
             RMSE(pcs.)  3599   3534   3628    3620   9537   15428   5758   9311
             MAE(pcs.)   2997   2887   3152    2896   8242   11055   4847   8096
             NS          0,74   0,75   0,74    0,74   -0,83  -3,79   0,33   -0,74


             62  The Journal of Environment, Urban and Climate
   68   69   70   71   72   73   74   75   76   77   78