Page 112 - Çevre Şehir ve İklim Dergisi - Özel Sayı
P. 112

Çölleşme ve Erozyonla Mücadele Çalışmalarında Coğrafi Bilgi Sistemleri ve
                               Uzaktan Algılama Teknolojilerinin Kullanımı

               Özenen-Kavlak, M., Güler, Ü., Demir Çakır, M., Aydemir, S., Aydemir, H. S., Berk
               Acet, Ş., Aydınlı, H. O., & Hassan Pashaeı, M. (2022). Haberleşme Uygulamalarında
               Uzaktan Algılama Ve Coğrafi Bilgi Sistemlerinin Kullanımı. Mühendislik Bilimleri ve
               Tasarım Dergisi, 10(2), 761–775. https://doi.org/10.21923/jesd.1000582
               Pan, J., & Li, T. (2013). Extracting desertification from Landsat TM imagery based on
               spectral mixture analysis and Albedo-Vegetation feature space. Natural Hazards,
               68(2), 915–927. https://doi.org/10.1007/s11069-013-0665-3
               Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.
               https://doi.org/10.1007/BF00116251
               Ramachandra, T. V, & Kumar, U. (2004). Geographic Resources Decision Support
               System for Land Use, Land Cover Dynamics Analysis. Proceedings of the FOSS/
               GRASS Users Conference.

               Renard, K. G., Foster, G. R., Weesies, G. A., Mccool, D. K., & Yoder, D. C. (1997).
               Predicting  soil  erosion  by  water :  A  Guide  to  Conservation  Planning  with  the
               Revised Universal Soil Loss Equation (RUSLE). In Agriculture Handbook.

               Rikimaru, A., Roy, P., & Miyatake, S. (2002). Tropical forest cover density mapping.
               Tropical Ecology, 43, 39–47.

               Rossi, R. J. (2019). Mathematical Statistics: An Introduction to Likelihood Based Inference.
               International Statistical Review, 87, 178–179. https://doi.org/10.1111/insr.12315

               Samarinas,  N.,  Tsakiridis,  N.  L.,  Kalopesa,  E.,  &  Zalidis,  G.  C.  (2024).  Soil  Loss
               Estimation by Water Erosion in Agricultural Areas Introducing Artificial Intelligence
               Geospatial Layers into the RUSLE Model. In Land (Vol. 13, Issue 2). https://doi.
               org/10.3390/land13020174
               Sui, D. Z., & Zeng, H. (2001). Modeling the dynamics of landscape structure in
               Asia’s  emerging  desakota  regions:  a  case  study  in  Shenzhen.  Landscape  and
               Urban Planning,  53(1),  37–52.  https://doi.org/https://doi.org/10.1016/S0169-
               2046(00)00136-5

               Tucker,  C.  J.  (1979).  Red  and  photographic  infrared  linear  combinations  for
               monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. https://
               doi.org/https://doi.org/10.1016/0034-4257(79)90013-0
               Uça Avcı, D., Uça Güneş, P., & Çabuk, A. (2015). Uzaktan Eğitim ile ‘Uzaktan Algılama’
               ve ‘Coğrafi Bilgi Sistemleri’ Eğitimlerinin Verilmesine Dair Bir Değerlendirme. Harita
               Teknolojileri Elektronik Dergisi, 7(3), 53–68. https://dergipark.org.tr/tr/pub/hartek/
               issue/17001/177622
               Wadoux, A. M. J.-C., Minasny, B., & McBratney, A. B. (2020). Machine learning
               for  digital  soil  mapping:  Applications,  challenges  and  suggested  solutions.



                                                                              111
                                                               Yıl 3 / Sayı 5 / Ocak-Haziran 2024
   107   108   109   110   111   112   113   114   115   116   117