Page 83 - Çevre Şehir İklim İngilizce - Sayı 4
P. 83

Hacı Abdullah Uçan - Tayfun Dede - Sinan Nacar


            parameter study can be performed in which the number of populations, the
            number of iterations and limit values will be included. Similar work can be
            done by including more up-to-date and effective optimization techniques.
               Using  the  forecast  models  obtained  from  this  study,  estimation  studies
            of the number of flats, number of licenses and surface area values can be
            performed for calculating urban transformation costs by using data sets that
            can be obtained from the relevant organizations for the future.

               References


               Friedman, J. H. (1991). “Multivariate adaptive regression splines”. The annals of
               statistics. 19(1), 1-67.
               Friedman,  J.H.  (2001)  “Greedy  function  approximation:  a  gradient  boosting
               machine”.  The Annals of Statistics.  29,  1189-1232.  https://doi.org/10.1214/
               aos/1013203451
                 Guan,  Q.,  Wang,  L.  and  Clarke,  K.  (2015).  “An  Artificial-Neural-Network-based,
               Constrained CA Model for Simulating Urban Growth”. Cartography and Geographic
               Information Science. 32(4), pp.369-380.

               Güner, Ş.N. (2021). “Yapay Sinir Ağları Yöntemiyle Konut Satışlarının İncelenmesi:
               Ankara İli Örneği”. Fiscaoeconomia. 5(1), 359-371.

               İlhan,  A.T.  and  Öz,  N.S.  (2020).  “Yapay  Sinir  Ağlarının  Gayrimenkullerin  Toplu
               Değerlemesinde Uygulanabilirliği: Gölbaşı İlçesi Örneği”. Hacettepe Üniversitesi
               Sosyal Bilimler Dergisi. Cilt 2/Sayı 2/2020
               Maithani, S. (2009). “A neural network based urban growth model of an Indian city”.
               Journal of the Indian Society of Remote Sensing. 37(3), pp.363-376.
               Mirjalili, S., Mirjalili, S. M., and Lewis, A. (2014). “Grey Wolf Optimizer. Advances in
               Engineering Software”. 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007
               Mohammady, S., Delavar, M.R., Pahlavani, P. (2014). “Urban Growth Modeling Using
               An Artificial Neural Network A Case Study Of Sanandaj City, Iran, The International
               Archives  of  the  Photogrammetry”.  Remote Sensing and Spatial Information
               Sciences, Volume XL-2/W3
               Özşahin, E. (2015). “Kent Planlaması ve Jeomorfoloji”. Kent Çalışmaları II. (Editörler:
               Mehmet Karakayu, Artif Keçeli, Şaban Çelikoğlu). Pegem Akademi, Ankara 2015,










             72  The Journal of Environment, Urban and Climate
   78   79   80   81   82   83   84   85   86   87   88