Page 79 - Çevre Şehir İklim İngilizce - Sayı 4
P. 79

Hacı Abdullah Uçan - Tayfun Dede - Sinan Nacar


               Table 16. Performance statistics of the training, verification and test data sets of
                       ANN-based models developed for the surface area variable
              Training  ANN_5  ANN_10 ANN_15 ANN_20 GWO_5 GWO_10 GWO_15 GWO_20

             RMSE
             (decare)  14806  14209   13832  12221  28593  43188   16110   17356
             MAE       8755    8783   8290   7794   25664  39532   10895   11129
             (decare)
             NS         0,47   0,51   0,54   0,64   -0,98   -3,51   0,37   0,27

             Verification  ANN_5  ANN_10 ANN_15 ANN_20 GWO_5 GWO_10 GWO_15 GWO_20

             RMSE      9908   10123   9578   10224  28095  42245   8423    9892
             (decare)
             MAE       6629    8533   7455   8247   25601  38626   5846    7214
             (decare)
             NS         0,50   0,48   0,54   0,47   -3,00   -8,04   0,64   0,50

             Test     ANN_5  ANN_10 ANN_15 ANN_20 GWO_5 GWO_10 GWO_15 GWO_20

             RMSE      9954   10239   8548   10706  30266  43342   10804   11642
             (decare)
             MAE       7610    7608   6651   7803   27093  40588   8745    9773
             (decare)
             NS         0,54   0,51   0,66   0,47   -3,27   -7,75   0,46   0,37


               When Table 16 is examined, it is seen that the performance statistics of
            the  GWO_15  model  give  good  results  in  verification  data  sets,  but  from
            the  point  of  view  of  training  and  test  data  sets,  lean  ANN  models  exhibit
            better performances. Of the models developed using different numbers of
            neurons, it has been determined that the model with the highest accuracy
            is the ANN_15 model, which was established using 15 neurons. As a general
            evaluation,  when  regression-based  models  and  ANN-based  models  are
            compared, it is seen that the model developed using the TreeNet method
            shows higher performance compared to the ANN models. In order to make
            this comparison clearer, time series of the surface area variable have been
            prepared (Figure 7).












            68  The Journal of Environment, Urban and Climate
   74   75   76   77   78   79   80   81   82   83   84