Page 142 - Çevre Şehir ve İklim Dergisi İngilizce - Özel Sayı
P. 142

National Scale Land Cover Classification and Monitoring System


               References

               Akın, A., Sunar, F., & Berberoğlu, S. (2015). Urban change analysis and future growth
            of Istanbul. Environmental monitoring and assessment, 187, 1-15.
               Aryal, K., Apan, A., & Maraseni, T. (2023). Comparing global and local land cover
            maps  for  ecosystem  management  in  the  Himalayas.  Remote  Sensing  Applications:
            Society and Environment, 30, 100952.
               Aydemir, M. S., Keyik, A. N., Kahraman, F., & Aptoula, E. (2020, October). Land Cover
            Map Production of the Sakarya Basin from Multi-Temporal Satellite Images. In 2020 28th
            Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
               Chen,  Y.,  Lin,  Z.,  Zhao,  X.,  Wang,  G.,  &  Gu,  Y.  (2014).  Deep  learning-based
            classification of hyperspectral data. IEEE Journal of Selected topics in applied earth
            observations and remote sensing, 7(6), 2094-2107
               Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., ... & Raskar,
            R. (2018). Deepglobe 2018: A challenge to parse the earth through satellite images.
            In Proceedings of the IEEE conference on computer vision and pattern recognition
            workshops (pp. 172-181).
               Griffiths, P., Nendel, C., & Hostert, P. (2019). Intra-annual reflectance composites
            from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote
            sensing of environment, 220, 135-151.
               LeCun,  Y.,  Bottou,  L.,  Bengio,  Y.,  &  Haffner,  P.  (1998).  Gradient-based  learning
            applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
               Pesaresi,  M.,  Corbane,  C.,  Julea,  A.,  Florczyk,  A.  J.,  Syrris,  V.,  &  Soille,  P.  (2016).
            Assessment  of  the  added-value  of  Sentinel-2  for  detecting  built-up  areas.  Remote
            Sensing, 8(4), 299.
               Rujoiu-Mare,  M.  R.,  &  Mihai,  B.  A.  (2016).  Mapping  land  cover  using  remote
            sensing data and GIS techniques: A case study of Prahova Subcarpathians. Procedia
            Environmental Sciences, 32, 244-255.
               Salman M. (2018). Hiperspektral ve lidar verilerinin öznitelik ve karar seviyelerinde
            tümleştirilmesi  ve  derin  evrişimli  sinir  ağlarıyla  sınıflandırılması,  Yüksek  Lisans  Tezi,
            Hacettepe Üniversitesi, Ankara.
               Sertel, E., Musaoğlu, N., Alp, G., Algan, I. Y., Kaya, Ş., Yüksel, B., & Yılmaz, A. (2018).
            1: 25.000 ölçekli ulusal arazi örtüsü/kullanımı sınıflandırma sistemi ile HGK TOPOVT
            veritabanının karşılaştırılması. Harita Dergisi, 160, 34-46.
               Sofu, A. M., İmamoğlu, M., Kahraman, F., Çetin, G. B., & Aptoula, E. (2020, October).
            Fine-Grained Urban Land Use and Land Cover Classification Through Multi-temporal
            and  Multispectral  Remote  Sensing  Images.  In  2020  28th  Signal  Processing  and
            Communications Applications Conference (SIU) (pp. 1-4). IEEE.




                                                                              129
                                                                    Special Issue  / 2024
   137   138   139   140   141   142   143   144   145   146   147