# UNIDO - ÇŞİDB

# Türkiye'de Soğuk Zincir Lojistiği ve Soğuk Zincirde İklim Dostu Teknolojiler/Alternatifler



Dr. Hüseyin ONBAŞIOĞLU İSKİD



#### Average temperature anomaly, Global

Global average land-sea temperature anomaly relative to the 1961-1990 average temperature in degrees celsius (°C). The red line represents the median average temperature change, and grey lines represent the upper and lower 95% confidence intervals.



Our World in Data





\* Source: European Commission









SOURCE: Green Cooling Technologies Market trends in selected refrigeration and air conditioning subsectors . Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH





Figure 8: Comparison of allowed emissions according to phase-down in the F-Gas regulation and the expected refrigerant demand (Clodic et al., 2010). Blue circles indicate the average GWP that matches both the demand and

the phase-down.

SOURCE: Green Cooling Technologies Market trends in selected refrigeration and air conditioning subsectors . Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH





#### Share of global cumulative CO2 emissions, 1793

Our World in Data

Each country or region's share of cumulative global carbon dioxide (CO<sub>2</sub>) emissions. Cumulative emissions are calculated as the sum of annuals emissions from 1751 to a given year.



2017

CHART

MAP

DATA



1751



#### Share of global cumulative CO<sub>2</sub> emissions, 2017

Each country or region's share of cumulative global carbon dioxide (CO<sub>2</sub>) emissions. Cumulative emissions are calculated as the sum of annuals emissions from 1751 to a given year.













Annual share of global CO<sub>2</sub> emissions



Each country's share of global carbon dioxide (CO2) emissions. This is measured as each country's emissions divided

Source: Our World in Data based on Global Carbon Project (2018)





Our World in Data

| Refrigerant           | Critical temperature<br>(°C) | Critical pressure<br>(bar) | Ozone depletion<br>potential | Global warming<br>potential (100 years) | Flammable or<br>explosive | Toxicity |
|-----------------------|------------------------------|----------------------------|------------------------------|-----------------------------------------|---------------------------|----------|
|                       |                              |                            |                              |                                         |                           |          |
| R12                   | 100.9                        | 40.6                       | 0.9                          | 8100                                    | No                        | No       |
| R22                   | 96.2                         | 49.8                       | 0.055                        | 1500                                    | No                        | No       |
|                       |                              |                            |                              |                                         |                           |          |
| R32                   | 78.4                         | 58.3                       | 0                            | 650                                     | Yes                       | No       |
| R134a                 | 101.1                        | 40.7                       | 0                            | 1200                                    | No                        | No       |
| R152a                 | 113.5                        | 45.2                       | 0                            | 140                                     | Yes                       | No       |
|                       |                              |                            |                              |                                         |                           |          |
| R404A                 | 72.1                         | 37.4                       | 0                            | 3300                                    | No                        | No       |
| R407C                 | 86.8                         | 46.0                       | 0                            | 1600                                    | No                        | No       |
| R410A                 | 72.5                         | 49.6                       | 0                            | 1900                                    | No                        | No       |
|                       |                              |                            |                              |                                         |                           |          |
| Propane (R290)        | 96.8                         | 42.5                       | 0                            | 3                                       | Yes                       | No       |
| Isobutane (R600a)     | 135.0                        | 36.5                       | 0                            | 3                                       | Yes                       | No       |
| Ammonia (R717)        | 132.2                        | 113.5                      | 0                            | 0                                       | Yes                       | Yes      |
| Carbon dioxide (R744) | 31.0                         | 73.8                       | 0                            | 1                                       | No                        | No       |

CFC, chlorofluorocarbon; HCFC, hydrochlorofluorocarbon; HFC, hydrofluorocarbon





#### CO2 (R744) Refrigerant

#### Table 5. Comparison of R-744 with other refrigerants

|                             | R-744 | HFOs | HCs | R-717 |
|-----------------------------|-------|------|-----|-------|
| Capacity                    |       |      |     |       |
| Efficiency                  |       |      |     |       |
| Pressure                    |       |      |     |       |
| Environmental impact        |       |      |     |       |
| Flammability                |       |      |     |       |
| Toxicity                    |       |      |     |       |
| Availability of refrigerant |       |      |     |       |
| Availability of components  |       |      |     |       |
| Availability of expertise   |       |      |     |       |
| Cost of refrigerant         |       |      |     |       |
| Cost of system              |       |      |     |       |



Refrigerant is similar to HFCs;

Aspect of the refrigerant is worse than HFCs; Aspect of the refrigerant is better than HFCs. 11



#### **Refrigerants Comparison**



Figure 3: Latent beat of vaporization/condensation for selected refrigerants.

Figure 4 shows the values for the volumetric refrigeration effect of the selected refrigerants. As can be seen in the plot  $CO_2$  has values which are





#### **Refrigerants Comparison**





Figure 4: Volumetric refrigeration capacity (complete evaporation) for selected refrigerants.



# **Refrigeration Cycle**

#### **Cold Storage Refrigeration**







# **Refrigeration Cycle**

#### **Refrigeration Cycle**







#### **Refrigerated Truck**







#### Energy Consumption for refrigerated road transport

- Approximately 650000 refrigerated road vehicles are currently in use within the EU. These vehicles can be grouped into three main types:
- Small converted vans (up to 3.5 tonnes, for example for catering or ice cream distribution),
- Rigid vehicles (trucks, up to 32 tonnes) and
- Articulated vehicles (up to 44 tonnes), which are used for the majority of refrigerated road transportation operations.
- Food transport estimated to be responsible for 1.8 % of total emissions.





#### Refrigerated Truck Energy Consumption

| Body                                 | Minimum                   |          | Fuel consumption |      | Associated refrigeration |       |
|--------------------------------------|---------------------------|----------|------------------|------|--------------------------|-------|
| Length/Volume/Type                   | refrigeration duty        |          | (l/hr)           |      | Duty (W)                 |       |
|                                      | (W) for AT                | TP based |                  |      |                          |       |
|                                      | on 0.4 W/m <sup>2</sup> K |          |                  |      |                          |       |
|                                      | -20 °C                    | 0 °C     | -20 °C           | 0 °C | -20 °C                   | 0 °C  |
| 6 m/ 30 m <sup>3</sup> / Rigid Lorry | 2380                      | 1428     | 1.5              | 2.0  | 3000                     | 5000  |
| <9 m/ 30 m <sup>3</sup> / Rigid      | 3850                      | 2310     | 2.5              | 3.0  | 6000                     | 9000  |
| Lorry                                |                           |          |                  |      |                          |       |
| 13.6 m/90 m <sup>3</sup> /Rigid      | 5250                      | 3150     | 3.0              | 4.0  | 7500                     | 13500 |
| Semi Trailer                         |                           |          |                  |      |                          |       |
| 13.6 m/>90 m3/Rigid                  | -                         | -        | 4.5              | 5    | 9500                     | 17500 |
| Semi Trailer                         |                           |          |                  |      |                          |       |





#### Vapour Compression Refrigeration Unit



UNIDO



#### Absorption Refrigeration utilising exhaust heat







#### Eutectic systems

- Phase Change Materials
- Combined Phase Change Materials and Vapor Compression System







#### **Cryogenic Cooling Systems**

- Liquid Nitrogen or Carbon Dioxide Injection
- Mechanical Systems







Figure 5. BOC 'Polarstream' Liquid Nitrogen Cooling System

#### Air Cycle Refrigeration

Transport refrigeration has been identified as a potential application area for air cycle systems on the grounds of weight, robustness, leakage, reliability and maintenance. Air cycle systems are also less sensitive to part-load operation.







#### Solar Powered Transport Refrigeration







#### Natural Refrigerant System Types

- Low-temperature (LT) or medium-temperature (MT) CO2 overfeed
- MT HFC DX with LT CO2 DX cascade
- HFC DX primary over combined MT overfeed with LT CO2 DX
- NH3-flooded primary over combined MT overfeed with LT CO2 DX
- CO2 transcritical booster system
- Self-contained water-cooled hydrocarbon





#### <mark>Tek kademeli basit transkritik çevrim</mark>











Fig. 3.1.1: Pumped system

Fig. 3.1.2: DX system

Fig. 3.1.3: Combined system





#### <mark>Tek kademeli sıvı/gaz <u>ayırıcılı transkritik</u> çevrim</mark>















• CO2 (R744) Ejector Integration



Figure 3.8 Schematic of R744 vapour compression refrigeration cycle with a two-phase ejector. Adapted from Sumeru et al.  $(2012)_{30}$ 





• CO2 (R744) Ejector Integration



UNIDO

Figure 3.9 P-h diagram of R744 vapour compression refrigeration cycle with a two-phase ejector and comparison with standard cycle. Adapted and modified from Sumeru et al. (2012)



• CO2 (R744) Ejector Integration







• CO2 (R744) Cascade System







• CO2 (R744) Booster System







• CO2 (R744) Booster System



Figure 3.6 Transcritical booster system in P-h layout. Adapted from Ge & Tassou (2011)





- Supermarkets are energy intensive buildings consuming 3-4% of the total annual electricity in industrialized countries
- 35-50% of this total electricity is consumed in the supermarket refrigeration systems.
- Supermarket refrigeration systems are one of the largest consumers and emitters of high GWP refrigerants; 30% of Europe HFC consumption 22% annual leakage rate.





• CO2 (R744) Booster System









CO2 (R744) Transritical System



Figure 2: Year 2013 map of CO<sub>2</sub> trans-critical booster systems in Europe (top-left), CO<sub>2</sub> cascade systems in Europe (bottom-left) and CO2 trans-critical and cascade/secondary stores in world (right) (Shecco, 2014)





• CO2 (R744) Transritical System





Figure 3: Systems schematics A) HFC reference systems RS1-RS2-RS3. B) TR1-Parallel transcritical. C) TR2-transcritical booster + Parallel medium temperature cycle. TR3- has only transcritical booster units D) TR4 and TR5-transcritical booster with flash gas by-pass.



• CO2 (R744) Transritical System







• CO2 (R744) Transritical System

Fig. 17. "All-in-one" transcritical R744 booster supermarket refrigeration system equipped with multi-ejector rack (IESPC unit) (Hafner et al., 2016).







• Self Contained HC Rerigeration System







• Self Contained HC Rerigeration System





Figure 3-6. Self-contained hydrocarbon condensing units with a hydronic loop





Figure 3-1. LT or MT CO2 overfeed system

























# THANKS FOR YOUR ATTENTION!



