# insight science for global

## Cost-effective ways to improve air quality The GAINS model to support effective policy making

- J. Borken-Kleefeld,
- Z. Klimont
- M. Amann et al.

Borken@iiasa.ac.at Mitigation of Air Pollutants and Greenhouse Gases (MAG)

## International Institute for Applied Systems Analysis Schloss Laxenburg/Lower Austria



Consulting EU Commission on Air Quality Strategy since 90'ies

### **Complex interactions between economic activities, impacts and potential measures**



Economic driver / source of pollutant

Acid rain/forest loss



#### Central questions for policy makers

- What impacts in future from current policies?
- What reductions are technically feasible?
- How much do they cost? optimal/non-optimal
- Who (which countries) pay(s)?
- How much are they willing to pay?
- Who benefits?
- Is it enough?
- Is it fair?



### **Concurrent impacts – multiple pollutants – complex interactions**

policy needs analysis for cost-effective decisions





## The GAINS model follows impact pathway - effective policy should start from targets





#### Central questions for policy makers

- What impacts in future from current policies?
- What reductions are technically feasible?
- How much do they cost? optimal/non-optimal
- Who (which countries) pay(s)?
- How much are they willing to pay?
- Who benefits?
- Is it enough?
- Is it fair?



## Emission scenarios for EU-28 2010-2050







- Upper blue line: Trend scenario (PRIMES 2010)
- Red range:
   Emissions with
   additional measures



#### Health impacts: Loss in statistical life through PM2.5





Trend: ~5 months shortening of statistical life expectancy after 2020



Additional measures could save ~55 million years of life of European population

#### Choosing an ambition level

Costs for improving individual effects







## The GAINS model follows impact pathway - uneven effects offer scope for optimisation





#### Additional measures for SO<sub>2</sub>

to achieve the MID case
Different countries tackle different pollutants with different technologies



#### Uniform or effect-based scenarios?

Example from discussion leading to Gothenburg Protocol (1999)





#### Four options for target setting

Where do we want to go by 2020?

#### **Environmental targets** for a cost-effectiveness optimization

- must be achievable in all countries,
- should result in internationally balanced costs and benefits.

#### Four options have been analysed with GAINS:

- 1. Uniform absolute targets ('caps') on environmental quality (in terms of impact indicators)
- 2. Equal relative change ('gap closure') in impact indicators compared to a base year
- 3. Equal portions of the possible improvements in each country (equal 'gap closure' between Baseline and Maximum Technically Feasible Reduction)
- 4. Europe-wide improvements at least cost



#### Option 1: Uniform cap of impact indicators

Loss in statistical life expectancy from PM2.5 (months)





#### Option 2:

#### Equal relative improvements compared to 2000

Acidification, accumulated excess deposition





#### Option 3:

#### Equal progress of the feasible improvement

Mortality due to PM2.5 (YOLLs)





## Option 4: Achieve improvements Europe-wide at least costs Costs for YOLL target





## Option 4: Achieve improvements Europe-wide at least costs Costs for YOLL target





#### More details and background available from:

- General GAINS policy portal: <a href="http://www.iiasa.ac.at/web/home/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/research/r
  - GAINS model: <a href="http://gains.iiasa.ac.at">http://gains.iiasa.ac.at</a>
- UNECE Gothenburg Protocol revision work
  - http://gains.iiasa.ac.at/index.php/policyapplications/gothenburg-protocolrevision
- Review of the EU Thematic Strategy on Air Pollution (TSAP); towards revision of National Emission Ceiling Directive (NECD)
  - http://gains.iiasa.ac.at/index.php/policyapplications/tsap



## Discrete options for ambition levels Closing the gap

|       | Health-PM | Acidification | Eutrophication | Ozone |  |  |
|-------|-----------|---------------|----------------|-------|--|--|
| HIGH  | 75%       | 75%           | 75%            | 75%   |  |  |
| High* | 75%       | 75%           | 75%            | 50%   |  |  |
| Mid   | 50%       | 50%           | 60%            | 40%   |  |  |
| Low*  | 25%       | 25%           | 50%            | 25%   |  |  |
| LOW   | 25%       | 25%           | 25%            | 25%   |  |  |

100% means: impact is reduced from Baseline to Maximum Technically Feasible Reduction



## Example from current process of EU Revision of the Thematic Strategy on Air Pollution /

(new) Directive on National Emission Ceilings



#### TSAP-2012 emissions

#### 2010-2050







- Blue ranges: TSAP-2012 CLE-MTFR
- Red ranges: Decarb CLE-MCE
- After 2025/30 progress only from decarbonisation



#### Health impacts PM

#### Methodology



- Exposure calculations with new EMEP model
  - 28\*28 km
  - downscaled to 7\*7 km with CHIMERE (replaces earlier City-Delta approach)
  - includes now secondary organic aerosols (SOA)
- Health impacts
  - Based on Pope et al. 2002 (as in earlier calculations),
     i.e., linear exposure-response for all-cause mortality
  - Preliminary estimates, since WHO REVIHAAP report not yet available
- Years of life lost (YOLLs)
  - Now calculated for all people older than 30 years (before only people older than 30 in 2010 were considered)

#### Health impacts PM2.5

#### Results







Baseline implies ~5 months shortening of statistical life expectancy after 2020

Additional MTFR measures could save ~55 million years of life of European population

#### Health impacts O<sub>3</sub>

#### Methodology



- Ozone exposure calculated with new EMEP model 28\*28 km
- HTAP advice on future O<sub>3</sub> hemispheric background:
  - -1 to +3 ppb between 2000 and 2020/2030,
     recommended central case with 0 ppb
  - Lower increase than earlier advice to CAFE from ACCENT Urbino questions (+4.5 ppb between 1990 and 2020)
- Premature mortality due to short-term exposure
  - Estimated based on SOMO35, as before in CAFE
- New evidence on mortality due to chronic exposure not yet included
  - Could be potentially significant
  - Advice from WHO REVIHAAP expected

## Health impacts from ground-level ozone Results



#### Premature deaths (cases/year)



Baseline implies ~20,000 cases of premature deaths from short-term exposure to ozone after 2020

Additional MTFR measures could save 3,000 cases of premature deaths/year

WHO/REVIHAAP will propose health impact approach for long-term exposure

#### **Ecosystems impacts**

#### Methodology



- New EMEP source/receptor relationships (28\*28 km)
- New 2012 set on critical loads
  - Improved harmonization of methodologies
  - Less focus on managed forests
- Critical loads also provided for protected areas (Natura 2000)
- Vegetation damage from ozone will be estimated in GAINS via ozone flux approach. Information has been received from EMEP, but not yet incorporated in GAINS for this report

#### **Ecosystems impacts**

#### Results



#### Eutrophication (unprotected area)





% of unprotected ecosystems area

Baseline leaves biodiversity unprotected at 950,000 km<sup>2</sup> (55%) of all ecosystems area

MTFR measures could provide protection to another 200,000 km<sup>2</sup> after 2020

Soil acidification will remain a threat to 50,000 km<sup>2</sup> (~4%) of European forests.

MTFR measures could protect another 30,000 km<sup>2</sup>

#### Acidification (unprotected forest area)



% of unprotected forest area

#### Natura2000 areas

#### Threat to biodiversity from excess nitrogen input





- Nitrogen input will continue to threaten biodiversity at about two thirds (350,000 km²) of these nature protection zones in the baseline case.
- MTFR measures could provide protection to another 100,000 km<sup>2</sup> after 2020
- An incomplete assessment, as not all countries have reported critical load data for Natura2000 areas

#### Additional air pollution control costs

as a percentage of GDP in 2020





#### **GAINS MODEL**



#### The GAINS approach

for identifying cost-effective emission control strategies (GHG-Air pollution INteractions and Synergies )



Extension of the GAINS multi-pollutant/multi-effect framework to include near-term climate impacts (<a href="http://gains.iiasa.ac.at">http://gains.iiasa.ac.at</a>)

|            |                                                             | PM<br>(BC,<br>OC) | SO <sub>2</sub> | NO <sub>x</sub> | VOC          | NH <sub>3</sub> | СО        | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O | HFCs<br>PFCs<br>SF <sub>6</sub> |
|------------|-------------------------------------------------------------|-------------------|-----------------|-----------------|--------------|-----------------|-----------|-----------------|-----------------|------------------|---------------------------------|
| Ī          | Health impacts: PM (Loss in life expectancy)                | $\sqrt{}$         | V               | V               | V            | V               |           |                 |                 |                  |                                 |
|            | O <sub>3</sub> (Premature mortality)                        |                   |                 | $\sqrt{}$       | $\sqrt{}$    |                 | $\sqrt{}$ |                 | $\sqrt{}$       |                  |                                 |
| ١          | <b>Vegetation damage:</b> O <sub>3</sub> (AOT40/fluxes)     |                   |                 | $\checkmark$    | $\checkmark$ |                 | $\sqrt{}$ |                 | $\sqrt{}$       |                  |                                 |
|            | Acidification<br>(Excess of critical loads)                 |                   | $\sqrt{}$       | $\sqrt{}$       |              | $\sqrt{}$       |           |                 |                 |                  |                                 |
|            | Eutrophication (Excess of critical loads)                   |                   |                 | $\checkmark$    |              | $\checkmark$    |           |                 |                 |                  |                                 |
|            | Climate impacts:<br>Long-term (GWP100)                      |                   |                 |                 |              |                 |           | $\sqrt{}$       | $\checkmark$    | $\sqrt{}$        | $\sqrt{}$                       |
| <b>=</b> I | Near-term forcing<br>(in Europe and global mean<br>forcing) | V                 | $\sqrt{}$       | $\checkmark$    | V            | $\sqrt{}$       | V         |                 |                 |                  |                                 |
|            | Black carbon deposition to the arctic                       | $\sqrt{}$         |                 |                 |              |                 |           |                 |                 |                  |                                 |



#### Method - emission factors

- "Unabated" emission factors for anthropogenic sources only
- Country/region specific factors taken into account wherever possible, i.e.:
  - For SO2: fuel characteristics
  - For PM: fuel and installation characteristics
  - For NH3: N-excretion and volatilization, production efficiency, housing period
  - For NMVOC: climatic conditions, volatility of fuels, solvent content of products



#### Method - abatement techniques

- Economic and technical information for "technical" measures
- For most techniques efficiency assessed from literature and communication with experts, however, country/ region specific factors taken into account when necessary and available, i.e.:
  - For NH3: geophysical conditions, feeding strategies
  - For NMVOC: sector "composition", solvent content of products
- Introduction of "applicability" parameter, i.e., maximum technically feasible application rate of control option
- Actual and projected penetration rate of control technology



### What is the origin of GAINS data?

[activities and activity parameters]

#### Historical (1990,1995,2000, 2005)

- Statistics (IEA, Eurostat, FAO, IFA, EFMA)
- Communication with national experts (consultations)
- UNECE and UNFCCC submissions,
- Industrial data (consultations CEPE, EFMA, other)
- Models (PRIMES, TREMOVE, CAPRI),
- Literature studies, and
- Own assessments

#### Forecasts (until 2030)

- Communication with national experts (consultations)
- UNECE and UNFCCC submissions,
- Industrial data (consultations),
- Models (PRIMES, TREMOVE, CAPRI, FAO, EFMA),
- Literature studies



### What is the origin of GAINS data?

[emission factors and ef parameters, reduction efficiencies and costs of abatement]]

- Guidebooks (CORINAIR/EMEP, AP-42, BUWAL)
- UNECE Expert Groups
- National submissions (consultations)
- International databases, e.g., CEPMEIP
- Industrial associations
- Peer-reviewed literature
- Grey literature
- Own expertise



## Scope for optimization...

 Some sources are more strongly linked than others via the atmosphere to sensitive receptors

 Some sources are cheaper to control than others



## Integrating over different effects: Air quality impacts in 2000 and policy for 2020





# Co-control of GHGs and air pollutants









## GAINS model and emission inventories

- GAINS is not an emission inventory model
- We are not reviewing the inventories but use them (and other sources) to validate GAINS estimates
  - We try to understand and reproduce the inventory (with GAINS resolution)



## Why?

#### We are interested in:

- projecting emissions,
- Assessing mitigation potential,
- calculating control costs,
- searching for costoptimal strategies considering constraints/targets





# The cost-effectiveness approach

Models help to separate policy and technical issues:

**Decision makers** 

#### Models

#### **Decide about**

- Ambition level (environmental targets)
- Level of acceptable risk
- Willingness to pay

### **Identify cost-effective and robust measures:**

- Balance controls over different countries, sectors and pollutants
- Regional differences in Europe
- Side-effects of present policies
- Maximize synergies with other air quality problems
- Search for robust strategies



## Central question for policy makers

To what level should the emissions of air pollutants be reduced in the year 2020?

- Where will emissions and effects be in 2020 without further policies?
- What reductions are technically feasible?
- How much do they cost? optimal/non-optimal
- Who (which countries) pay(s)?
- How much are they willing to pay?
- Who benefits?
- Is it enough?
- Is it fair?



## Scope for further environmental improvements across all (quantified) effects





## Conclusions on target setting

- The target setting approach will determine the ambition level and distribution of costs:
  - 1. Uniform absolute caps on environmental quality indicators will not produce equitable distributions of reduction costs.
  - 2. Equal relative improvements compared to a base year (e.g., 2000) are constrained by countries with untypical situations.
  - 3. 'Equal portions of the possible improvements' targets lead to more equitable distributions of costs, but are sensitive to weakly defined baselines and MTFRs.
  - 4. Larger spatial flexibility will reduce total costs, but result in uneven environmental benefits. (Might be acceptable for YOLLs, but questionable for ecosystems.)

