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1.0 Introduction

The purpose of all Emission Estimation Technique (EET) manuals in this series is to assist
Australian manufacturing, industrial, and service facilities to report emissions of listed substances
to the National Pollutant Inventory (NPI). This manual describes the procedures and recommended
approaches for estimating emissions from facilities engaged in electronics and computer
manufacturing.

EET MANUAL : The Electronics & Computer Industry

HANDBOOK    : Computers and Electronic Equipment Manufacturing

ANZSIC CODE : 2841, 2849

This manual was drafted by the NPI Unit of the Queensland Department of Environment and
Heritage on behalf of the Commonwealth Government. It has been developed through a process of
national consultation involving State and Territory environmental authorities and key industry
stakeholders.
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2.0 Process Description and Emission Sources

The electronics and computer industry is comprised of five major groups: telecommunications,
computers, industrial electronics, consumer electronics, and semiconductors. Many segments of the
electronics and computer industry are interdependent and share common manufacturing processes.
Products produced by the electronics and computer industry are shown in Table 1.

Table 1 - Sectors of the Electronics and Computer Industry
Industry Industry

Transformers Motors and Generators

Communication Equipment Printed Circuit Boards & Semiconductors

Integrated Circuits Cathode Ray Tubes

Source: Queensland Department of Environment and Heritage, 1998.

Due to the vast variety of equipment manufactured by the electronics and computer industries, this
Section focuses on the distinct equipment and products that raise environmental issues and which
are most likely to be included by manufacturing facilities reporting to the NPI. This equipment
includes:

•  Semiconductors and Related Devices;
•  Printed Circuit Boards (also called printed wiring boards); and
•  Cathode Ray Tubes.

The Section focuses on semiconductors and not integrated circuits because integrated circuits are
used to produce semiconductors and most electronic devices manufactured today are multiple
devices/circuit chips. Semiconductors, although accounting for only a tiny portion of industry sales,
are crucial to electronic products and pose numerous environmental concerns. Printed circuit boards
and cathode ray tubes also raise environmental concerns from their manufacturing processes and
facilities producing any of these products are likely to trigger NPI reporting obligations.

2.1 Semiconductors

Semiconductors can serve one of two purposes:

(1) they act as a conductor by guiding or moving an electrical current; or
(2) as an insulator by preventing the passage of heat or electricity.

Semiconductors are used in computers, consumer electronic products, telecommunication
equipment, industrial machinery, transportation equipment, and military hardware. Typical
functions of semiconductors in these products include information processing, display purposes,
power handling, data storage, signal conditioning, and conversion between light and electrical
energy sources. Computers, however, remain the principal end-use of semiconductors, constituting
around 40 percent of the market.

Semiconductors are made of solid crystalline material, usually silicon, formed into a simple diode
or many integrated circuits. A simple diode is an individual circuit that performs a single function
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affecting the flow of electrical current. Integrated circuits combine two or more diodes. Up to
several thousand integrated circuits can be formed on the wafer, although 200 to 300 integrated
circuits are usually formed. The area on the wafer occupied by integrated circuits is called a chip or
die.

The semiconductor manufacturing process is complex and may require that several of the steps be
repeated to complete the process. To simplify this description, the process has been broken down
into five steps:

•  design;
•  crystal processing;
•  wafer fabrication;
•  final layering and cleaning; and
•  assembly.

The primary reason that semiconductors fail is contamination, particularly the presence of any
microscopic residue (including chemicals and particulates) on the surface of the base material, or
circuit path. Therefore, a clean environment is essential to the manufacture of semiconductors.
Cleaning operations occur before and after many of the manufacturing process steps. Wet
processing, during which semiconductor devices are repeatedly dipped, immersed, or sprayed with
solutions, is commonly used to minimise the risk of contamination.

Step One: Design

As with any manufacturing process, the need for a particular type of product must be identified and
process specifications must be developed to address that need. In the case of semiconductors, the
circuit is designed using computer modelling techniques. Computer simulation is used to develop
and test layouts of the circuit path. Then, patterning masks, which are like stencils, are fabricated,
manufacturing equipment is selected, and operating conditions are set. All of these steps occur prior
to actually producing a semiconductor.

Step Two: Crystal Processing

Wafers, which consist of thin sheets of crystalline material, are the starting phase of semiconductor
production. Silicon, in the form of ingots, is the primary crystalline material used in the production
of 99 percent of semiconductors. Silicon crystals are actually grown using controlled techniques to
ensure a uniform crystalline structure. Because crystals of pure silicon are poor electrical
conductors, controlled amounts of chemical impurities or dopants are added during the
development of silicon ingots to enhance their semiconducting properties. Dopants are typically
applied using diffusion or ion implantation processes. Dopants eventually form the circuits that
carry the flow of current.

•  Diffusion is a chemical process, which exposes the regions of the silicon surface to vapours of
the metal additive (dopant) while maintaining high temperatures. The process ends when the
additives migrate to the proper depth and reach the appropriate concentration in the silicon wafer.

•  Ion Implantation is a process that allows for greater control of the location and concentration
of dopants added to the wafer. Metal dopants are ionised and accelerated to a high speed.
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Either doping process can be used in semiconductor manufacturing. The NPI-listed substances:
antimony, arsenic, phosphorus, and boron compounds are the dopant materials most commonly
used for silicon-based semiconductors. Other dopants include aluminium, gallium, gold,
germanium, silicon, tin, tellurium, and the NPI-listed metals beryllium and magnesium. Emissions
and solid wastes containing the listed substances: antimony, arsenic, phosphorus, and boron may be
generated in the wastewater as a result of ion implantation or diffusion. Excess dopant gases,
contaminated carrier gases, and out-gassed dopant gases from semiconductor materials may also be
generated.

Most semiconductor manufacturers obtain single crystal silicon ingots from other manufacturing
firms. Ingots are sliced into round wafers approximately 0.76mm thick and then rinsed. The wafers
are further prepared by mechanical or chemical means. A wafer’s surface may be mechanically
ground, smoothed, and polished, as well as chemically etched so that the surface is smooth and free
of oxides and contaminants. Chemical etching removes organic contaminants using cleaning
solvents and removes damaged surfaces using acid solutions. Chemical etching is usually followed
by a deionised water rinse and drying with compressed air or nitrogen. In some cases, bare silicon
wafers are cleaned using ultrasound techniques, which involve potassium chromate or other mildly
alkaline solutions.

Etching is a method of cutting into, or imprinting on, the surface of a material. Several etching
processes can be used on semiconductors, as well as integrated circuits and printed circuit boards.
Wet etching uses acid solutions to cut patterns into the metal. Dry etching involves reactive gases
and is rapidly becoming the method of choice for high resolution. Dry etching processes use various
halogenated or non-halogenated gaseous compounds.

In the semiconductor industry, dry plasma etching, reactive ion etching, and ion milling processes
are being developed to overcome the limitations of wet chemical etching. Dry plasma etching, the
most advanced technique, allows for etching of fine lines and features without the loss of definition.
This process forms a plasma layer above the surface to be etched by combining large amounts of
energy with low-pressure gases. The gases usually contain halogens.

Materials used during the wet etching process may include the following NPI-listed substances:
sulfuric, phosphoric, nitric, hydrofluoric, and hydrochloric acids; ethylene glycol; and solutions of
ammonium. Other etching materials used include hydrogen peroxide and other hydroxide solutions
and ferric or potassium compounds. Materials used during the dry etching process may include
chlorine, hydrogen bromide, carbon tetrafluoride, sulfur hexafluoride, trifluoromethane, fluorine,
fluorocarbons, boron trichloride, hydrogen, oxygen, helium, and argon. Typical solvents and
cleaning agents include the NPI-listed substances acetone, xylenes, glycol ethers, together with
deionised water and isopropyl alcohol. The most commonly used cleaning solution in
semiconductor manufacturing includes a variety of proprietary products containing a combination
of hydrogen peroxide and sulfuric acid.

Emissions generated include acid fumes and organic solvent vapours from cleaning, etching, resist
drying, developing, and resist stripping operations. Hydrogen chloride vapours may also be emitted
during the etching process.

Step Three: Wafer Fabrication

Wafers are usually fabricated in batches of 25 to 40. Wafer preparation begins with an oxidation
step.

•  Oxidation is a process in which a film of silicon dioxide is formed on the exterior surface of the
silicon wafer. Thermal oxidation takes place in a tube furnace with controlled, high temperatures
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and a controlled atmosphere. Oxidation is a reaction between the silicon wafer surface and an
oxidant gas, such as oxygen or steam. This process may be needed as a preliminary step before
diffusion or ion implantation (doping). This layer protects the wafer during further processing.
Following oxidation, the wafer surface is thoroughly cleaned and dried.

Materials used during oxidation include silicon dioxide, acids (hydrofluoric), and solvents.
Materials such as oxygen, hydrogen chloride, nitrogen, trichloroethane, and trichloroethylene
(perchloroethylene) may also be used.

Emissions generated from this process include spent solvents (non-halogenated) including xylenes,
acetone, ethyl acetate, styrene, methyl isobutyl ketone, and methanol as well as spent acids and
solvents in the wastewater.

Next, patterns are imprinted onto the substrate using photolithography (also referred to as
lithography) and etching processes. Photolithography is the most crucial step in semiconductor
manufacturing because it sets a device’s dimensions - incorrect patterns affect the electrical
functions of the semiconductor.

•  Photolithography is a process similar to photoprocessing techniques and other etching
processes. The silicon wafer is coated uniformly with a thin film of resist. A glass plate or mask is
created with the circuit pattern, and the pattern is imprinted in one of several ways. One type of
optical photolithography is the projection of x-rays through a special mask close to the silicon slice.
Another type of optical photolithography, one that does not need a mask, is electron-beam direct
patterning, which uses a controllable electron beam and an electron sensitive resist. Once the pattern
is developed, some areas of the wafer are clear and the rest are covered with resist.

Two types of photoresists can be used during semiconductor production:

•  Positive photoresists are chemicals that are made more soluble, after exposure to radiation.
During development, the developer removes the resist that was exposed to radiation.

•  Negative photoresists are chemicals that polymerise and stabilise upon exposure to radiation.
During development, the developer removes the resist that was protected from radiation.

After photolithography, chemical developers are used to remove the unnecessary coatings or the
resist material that remain on the substrate. Development can be conducted by liquid methods (dip,
manual immersion, or spray coating) or dry methods (plasma). The wafer is then etched in an acid
solution to remove selected portions of the oxide layer to create depressions or patterns. The
patterns are areas in which dopants will be applied. The wafer is generally rinsed by immersion in a
stripping solution to remove unwanted photoresist, and then dried. Table 2 provides a list of
material used during the photolithography process and highlights those pollutants listed on the NPI.

Table 2 - Substances Used in Photolithography for Semiconductors
Photoresists Developer Solvents and Cleaning

Agents
Positive: Positive: Deionised water
Ortho-diazonketone c Sodium hydroxide Detergents b
Polymethacrylate c Potassium hydroxide Isopropyl alcohol c
Polyfluoroalkylmethacrylateb Silicates Acetone a c

Polyalkylaldehyde c Ethylene glycol a c Ethanol a c

Polycyanoethylacrylate b c Ethanolamine c Hydrofluoric acid a
Polymethylmethacrylate a c Isopropyl alcohol c Sulfuric acid a
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Poly(hexafluorobutylmeth-
acrylate) b c

Tetramethyl-ammonium
hydroxide b

Hydrogen peroxide

Phosphates a Hydrochloric acid a
Negative: Alkyl amine c Nitric acid a
Isoprene c Ethyl acetate a c Chromic acid b
Ethyl acrylate c Methyl isobutyl ketone a c Ammonium hydroxide b
Glycidylmethacrylate c Hexamethyldisilazane c
Copolymer-ethylacrylate c Negative: Xylenes a c

Xylenes a c Cellosolve acetate c
Aliphatic hydrocarbons b c n-Butyl acetate c
n-Butyl acetate c Styrene a c

Cellosolve acetate c Chlorotoluene c
Isopropyl alcohol c Glycol ethers a c

Stoddard solvent b c

Glycol ethers a c

Adapted from: USEPA Office of Compliance Sector Notebook Project, September 1995.
a NPI-listed substance.
b  Compound or mixture containing one or more NPI-listed substance.
c Volatile organic compound (VOC).

During the next step, dopants are applied to the patterned wafer surface typically using diffusion or
ion implantation. See Step two for a list of materials used and emitted during the doping process.

Additional layers of silicon may also be applied to the wafer using deposition techniques, typical
epitaxial growth or chemical vapour deposition.

•  Epitaxyl allows the growth of another layer of silicon on top of the wafer. A silicon layer is
grown using high temperatures and dopant compounds. This top layer of silicon is where the final
device will be formed. Not all semiconductors need this layer.

•  Chemical vapour deposition deposits a thin coating on materials by a chemical process.
Vapour deposition is a low-pressure process that combines appropriate gases in a reactant chamber
at elevated temperatures to produce a uniform film thickness.

Emissions generated from these processes include:

•  acid fumes from etching operations;
•  organic solvent vapours from cleaning resist drying, developing, and resist stripping; hydrogen

chloride vapours from etching;
•  rinsewaters containing acids and organic solvents from cleaning, developing, etching, and resist

stripping processes;
•  rinsewaters from aqueous developing systems; and
•  spent etchant solutions; spent solvents and spent acid baths.

Many products require steps two and three to be repeated several times in order to create the
specified structure.

Step Four: Final Layering and Cleaning

Once the wafer is patterned, the wafer surface is coated with thin layers of metal by a process called
metallisation. These metal layers perform circuit functions within the finished semiconductor.
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External connections to the silicon wafer are provided by evaporation of thin metal films onto areas
of the semiconductor chip surface in a vacuum. Almost every metal can be used to make this
electrical connection to the silicon; aluminium, platinum, titanium, nickel, chromium, silver,
copper, tungsten, gold, germanium, and tantalum are the most common. Argon gas is also used in
some operations. Sputtering and high vacuum evaporation are two types of metallisation.

•  Sputtering (also called partial vacuum evaporation) is a physical, rather than chemical process.
This process occurs in a vacuum chamber which contains a target (solid slab of the film material)
and the wafers. Argon gas is introduced in the chamber and ionised to a positive charge. The
positively charged argon atoms accelerate toward and strike the target, dislodging the target atoms.
The dislodged atoms are deposited onto the wafer surface. A uniform thickness of the coating is
produced over the silicon slice.

•  High vacuum evaporation is a process that uses an electron beam, a ceramic bar heated by
thermal resistance, or a wire heated by electrical resistance. This method coats the surface of the
wafer with metal.

Photolithography and etching are also used to remove any unnecessary metal using chlorinated
solvents or acid solutions. Emissions generated include: acid fumes and organic solvent vapours
from cleaning, etching, resist drying, developing, and resist stripping; liquid organic wastes;
aqueous metals; and wastewater contaminated with spent cleaning solutions.

In the next step, passivation is used to apply a final layer of oxide over the wafer surface to provide
a protective seal over the circuit. This coating protects the semiconductor from exterior influences
and may range in thickness from a single layer of silicon dioxide to a relatively thick deposit of
special glass. It also insulates the chip from unwanted contact with other external metal contacts.
Materials used to form the passivation layer are silicon dioxide or silicon nitride.

After all layers have been applied to the wafer, the wafer is typically rinsed in deionised water. The
back of the wafer is then mechanically ground (also called lapping or backgrinding) to remove
unnecessary material. A film of gold may be applied to the back of the wafer by an evaporation
process to aid the connection of leads to the bonding pads during a later process step.

Testing with alcohol compounds is conducted to ensure that each chip is performing the operations
for which it was designed. Chips that do not meet specifications are marked with an ink droplet for
discard during assembly operations. The wafer is cleaned again after testing, using solvents such as
deionised water, isopropyl alcohol, acetone, and methanol.

Emissions generated from these processes include:

•  spent solvents and acids in the wastewater and rinsewater from cleaning, developing, etching,
resist stripping, and rinsing processes;

•  acid fumes and organic solvent vapours from cleaning, rinsing, resist drying, developing, and
resist stripping;

•  spent silicon dioxide or nitride;
•  hydrogen chloride vapours from etching;
•  rinsewaters from aqueous developing systems;
•  spent etchant solutions;
•  spent acid baths; and
•  spent solvents.

Step Five: Assembly
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Semiconductors are assembled by mounting chips onto a metal frame, connecting the chips to metal
strips (leads), and enclosing the device to protect against mechanical shock and the external
environment. There are many types of packaging such as plastic or ceramic.

Each package contains five parts:

1. the dye (ie. the chip);
2. the lead frame of the package;
3. the dye-attach pad;
4. the wire bond; and
5. the moulded encapsulant (ie. the plastic housing).

This section describes how plastic packages are assembled. All semiconductor packages whether
plastic or ceramic share the same basic parts and are assembled using the same general processes.

The lead frame and leads provide the connections for the electronic components.

•  The punching process consists of an array of small mechanical punches that remove sections of
the metal sheet until the lead frame is complete. The leads are cleaned with water-based cleaning
systems. Historically, manufacturers used chlorinated fluoro-carbons (CFCs) or other solvents to
remove cutting fluids. The use of CFCs in Australia has been phased out during the last decade, due
to their role in the depletion of the stratospheric ozone, and the manufacture and import of these
chemicals has not been undertaken since early in 1996. Since this time, the use of CFCs in the
semiconductor industry has been replaced by other solvents. The lead frame is coated with a layer
of photoresist, exposed, and developed. The manufacturer etches the lead frame, removes the
photoresist, and cleans the lead frame again with water-based cleaning systems.

•  If the lead frames are etched, the process is similar to that used during the manufacturing of
printed circuit boards. Acids or metal chlorides are usually used during etching. Sometimes
ammonia is used to stabilise the metal chloride. The photoresist contain solvents (such as
trichloroethylene or TCE) that are baked out and generate VOC emissions. Developers that are
typically used include either an amine or metal hydroxide. Once the photoresist is removed, it is
cleaned with solvents such as a mild hydrochloric acid (HCl) solution with a brightener that
contains sulfuric acid (H2SO4).

Emissions generated during punching or etching may include:

•  spent organic vapours generated from cleaning, resist drying, developing, and resist stripping;
•  spent cleaning solutions;
•  rinsewaters contaminated with organic solvents; and
•  spent aqueous developing solutions.

Scrap copper or copper alloy may be recycled during the punching process.

The chip is then attached to an attach pad, with a substance such as an epoxy material (thermoset
plastic). Once mounted, the chips are inspected. The chip parts are bonded to the leads of the
package with tiny gold or aluminium wires. A package may have between two and 48 wire bonds.
The assembly is cleaned and inspected again. The combined components are then placed into a
moulding press, which encases the chip, wire bonds, and portions of the leads in plastic. After the
moulding compound cures and cools around the package, the package is heated again to ensure that
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the plastic is completely cured. Excess material is removed using a chemical or mechanical deflash
process. M-Pyrol is one organic solvent used during the deflash process. The final steps in package
fabrication include trimming and forming the leads.

Emissions generated during these steps include excess epoxy/thermoset plastic; antimony trioxide
(from the moulding process); and spent organic solvents.

Table 3 summarises the emissions from all semiconductor manufacturing processes.

Table 3 - Emissions from Semiconductor Manufacturing
Process Air

Emissions
Water

Emissions
Solid-Waste
Emissions

Crystal
Preparation

Acid fumes,
VOCs,
dopant
gases

Spent deionised water, spent
solvents, spent alkaline
cleaning solutions, spent
acids, spent resist material

Wafer
Fabrication

VOCs and
dopant
gases

Spent solvents, spent acids,
aqueous metals, spent etchant
solution, and spent aqueous
developing solutions

Spent non-halogenated
solvents: xylene, acetone,
ethyl acetate, ethyl ether,
ethyl  benzene, methyl
isobutyl ketone, methanol,
cyclohexanone, and n-butyl
alcohol in still bottoms

Final
Layering and
Cleaning

Acid fumes
and VOCs

Spent deionised water, spent
solvents, spent acids, spent
etchants, spent aqueous
developing solutions, spent
cleaning solutions, aqueous
metals, and chromium

Spent solvents

Assembly VOCs Spent cleaning solutions,
spent solvents, and aqueous
developing solutions

Spent epoxy material and
spent solvents

Adapted from: USEPA Office of Compliance Sector Notebook Project, September 1995.

2.2 Printed Circuit Boards

Computers are also the largest Australian market for printed circuit boards (PCBs), with
communications being the second largest application market. PCBs and assemblies are used in
many electronic products such as electronic toys, radios, television sets, electrical wiring in cars,
avionics, computers, biotechnology, medical devices, digital imaging technology, and industrial
control equipment.

PCBs are the physical structures on which electronic components such as semiconductors and
capacitors are mounted. The combination of PCBs and electronic components is an electronic
assembly or printed circuit assembly (PCA). The manufacture of PCBs is the most chemical-
intensive process in the building of a computer workstation.
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PCBs are subdivided into single-sided, double-sided, multilayer, and flexible boards. Multilayer
boards are manufactured in the same way as single and double-sided boards, except that conducting
circuits are etched on both the external and internal layers. Multilayer boards allow for increased
complexity and density. PCBs are produced using three methods: additive, subtractive, or semi-
additive technology. The subtractive process accounts for a significant majority, perhaps 80 percent
or more, of PCB manufacturing.

The conventional subtractive manufacturing process begins with a board, consisting of epoxy resin
and fibreglass, onto which patterns are imaged. In most operations, conducting material, usually
copper, is bonded onto the substrate surface to form copper-clad laminate. After drilling holes
through the laminate and making those holes conductive, unwanted copper is etched off, leaving
copper patterns. The patterns on the board form the electric circuits that conduct electricity.
Multilayer boards typically use metals such as platinum, palladium, and copper to form electric
circuits. Specialised PCBs may use nickel, silver, or gold.

Additive technology is used less often than subtractive technology because it is a more difficult and
costly production process. This capital-intensive technology is used primarily for small
interconnection components used in multi-chip devices. The production process begins with a base
plate upon which a dielectric material is deposited. An interconnecting layer of copper is plated
onto the dielectric layer, which connects the layers of dielectric material and copper. Copper posts
are plated-up and another layer of dielectric material is deposited exposing the posts. The next
interconnecting layer is plated and makes contact with the posts. Layers of dielectric material,
copper, and copper posts are added to complete the chip. A lithographic process, similar to the one
used in semiconductor manufacturing, diminishes the spaces and widths of the PCB.

This section provides a simplified discussion of the steps commonly performed during conventional
subtractive manufacturing. The actual steps and materials used by a PCB manufacturer vary
depending on customer requirements and the products being manufactured. This feature of the PCB
industry ensures it is both complex and difficult to characterise the industry for NPI reporting
obligations and to provide guidance in estimating emissions from PCB manufacture. Nevertheless,
the following discussion attempts to provide the reader with information on the likely emissions of
NPI substances expected to arise from PCB manufacture. PCB manufacturing can be grouped into
five distinct steps:

•  Board preparation;
•  Application of conductive coatings (plating);
•  Soldering;
•  Fabrication; and
•  Assembly.

Step One: Board Preparation

Board preparation begins with a lamination process. Two-side etched copper dielectric boards
(consisting usually of fibreglass and epoxy resin) are separated by an insulating layer and laminated
or bonded together, usually by heat and pressure. Photographic tools are used to transfer the circuit
pattern to the PCB, and computer control programs are used to control the drilling, routing, and
testing equipment. Preparing the copper-clad board involves drilling holes to establish an electrical
path between the layers and to mount components. The boards are then mechanically cleaned to
remove drilling wastes (that is, fine particulate contaminants, such as copper).
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Vapour degreasing, abrasive cleaning, chemical cleaning with alkaline solutions, acid dips, and
water rinses are techniques used to clean the boards and prepare them for the next process, namely
electroless plating. Table 4 shows a list of materials used during the lamination, drilling, and
cleaning processes.

Table 4 - Chemicals Used in Lamination, Drilling, and Cleaning
Lamination Drilling Cleaning

Epoxies b Sulfuric acid a
Potassium permanganate b
Ammonium bifluoride a
Oxygen
Fluorocarbon gas b c

Acetone a c

1,1,1-Trichloroethane a c

Silica (and other abrasives)
Sulfuric acid a
Ammonium hydroxide a
Hydrochloric acid a

Source: Queensland Department of Environment and Heritage, 1998.
a NPI-listed substance.
b  Compound or mixture containing one or more NPI-listed substance.
c Volatile organic compound (VOC).

Emissions generated include:

•  airborne particulates including PM10 (particulate matter with an aerodynamic diameter of less
than or equal to 10µm), acid fumes, and organic vapours from cleaning, surface preparation, and
drilling;

•  spent acid and alkaline solutions;
•  spent developing solutions, spent etchants and waste rinsewaters in the wastewater; and
•  scrap board materials and sludges from wastewater treatment.

Drilling and routing dusts (including copper) are collected and recycled.

Step Two: Electroless Plating

The first process in this step is to prepare the surfaces of the drilled holes. The holes are prepared by
an etchback process to remove smeared epoxy resin and other contaminants using one of the
following: sulfuric or hydrochloric acid; potassium permanganate; or carbon tetrachloride, oxygen,
and nitrogen. The holes are then coated with a material such as copper or graphite carbon by a
chemical process called electroless plating.

Electroless plating coats a uniform conducting layer of copper or other material on the entire
surface including the barrels of the holes of the prepared board without outside power sources.
According to Printed Circuit Board Basics, this coating of copper is not thick enough to carry an
electrical current, but provides a base upon which additional copper can be deposited
electrolytically. Copper is the industry standard, but many are switching to direct metallisation
processes. Chemical deposition is the technique used to coat the board. After the electroless plating,
the boards are dried to prevent the board from oxidation, or rusting. The board may also be cleaned
to prepare for a following electroplating process. See Table 6 for a list of materials used.

Emissions generated include:

•  spent electroless copper baths;
•  spent catalyst solutions;
•  spent acid solutions;



The Computer and Electronics Industry 12

•  spent electroless copper baths;
•  spent catalyst solutions;
•  spent acid solutions;
•  waste rinsewaters; and
•  sludges from wastewater treatment.

Step Three: Imaging

During imaging, circuit patterns are transferred onto the boards through photolithography or a
stencil printing process. Photoresist (ie. a light sensitive chemical) is applied to the board in areas
where the circuit pattern will not be set. The board is exposed to a radiation source and developed to
remove the unwanted areas of the resist layer. Stencil printing uses a printing process, such as silk
screening, to apply a protective film that forms the circuit pattern.

After photolithography, the boards are subjected to a light etching process, typically using
ammoniacal etchants, to remove rust inhibitor (applied by the company that produced the material
from which the board is made) or other metals (usually copper). After the stencil printing process,
the protective film is dried, and the exposed copper is etched away. Sulfuric acid and hydrogen
peroxide are common etchants used during imaging. After plating or etching, the photoresist is
removed with a photoresist stripper.

Table 5 and Table 6 detail the materials used during photolithography and etching processes.
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Table 5 - Chemicals Used in Printed Circuit Board Photolithography
Resists Photopolymer Developers Photopolymer

Strippers
Mylar (DuPont) or
Melinex (Orica) polyester
film
Vinyl
Photoresists

Isopropyl alcohol c
Potassium bicarbonate
Sodium bicarbonate
1,1,1-Trichloroethane c
Amines b c

Glycol ethers c

Sodium hydroxide
Potassium hydroxide
Dichloromethane c
(methylene chloride)

Source: Queensland Department of Environment and Heritage, 1998.
a NPI-listed substance.
b  Compound or mixture containing one or more NPI-listed substance.
c Volatile organic compound (VOC).

Emissions generated during the cleaning and etching processes include a wide range of solvents,
many of which are NPI-listed. The solvents emitted depend on the concentration of the spent
solvents and the mixture of spent halogenated and non-halogenated solvents; spent resist material;
and wastewater containing metals (copper). Other emissions generated include organic vapours and
acid fumes, spent developing solutions, spent resist material, spent etchant, spent acid solutions, and
sludges from wastewater treatment.

Table 6 - Substances Used During Etching
Ammonia a
Ammonium chloride a
Ammonium hydroxide a
Ammonium persulfate a
Ammonium sulfate a
Boric acid a
Carbon tetrachloride c
Chlorine a
Cupric chloride a
Hydrochloric acid a

Hydrofluoric acid a
Hydrogen peroxide
Lead a
Nickel a
Nickel chloride a
Nickel sulfamate a
Nitrate a
Nitric acid a
Nitrogen
Orthophosphate a

Oxygen
Peptone
Permanganates b
Sodium citrate
Sodium hydroxide
Stannous chloride
Sulfuric acid a
Tin

Source: Queensland Department of Environment and Heritage, 1998.
a NPI-listed substance.
b  Compound or mixture containing one or more NPI-listed substance.

Step Four: Electroplating

Electroplating is a process in which a metal is deposited on a substrate through electrochemical
reactions. Electroplating is required to build up the thickness and strength of the conducting layers
to provide reliable electrical conductivity between inner layers or from one side of the PCB to the
other. Electroplating can also protect against corrosion, wear, and erosion. This process involves
immersing the article to be coated or plated into a bath containing acids, bases, or salts. The
industry standard for this process is copper, although many are switching to direct metallisation
techniques.

The electroplating process for PCBs usually begins with the copper laminate which is coated with a
plating resist (photolithography) by stencilling, leaving the area exposed to form the circuit pattern.
The resist prevents the conductive material from adhering to other areas of the board and forms the
circuit pattern.
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The PCB plating process generally uses copper and tin-lead as plating materials, although silver,
nickel, or gold, can also be used. Copper in a plating bath solution is deposited to a sufficient
thickness, and a solvent or aqueous solution is applied to remove the plating resist. The copper
coating forms inter-connections between the layers and provides electrical contact for electronic
parts mounted or assembled on the PCB surface. PCB manufacturers then typically electroplate a
tin or tin-lead solder on the board to protect the circuit pattern during the following etching or
stripping processes. An acid etch solution (ammoniacal, peroxide solutions, sodium persulfate,
cupric chloride, or ferric chloride) removes the exposed copper foil, leaving the thicker copper
plating to form the circuit pattern. Ammoniacal and cupric chloride are the primary etchants used
by PCB manufacturers. Fluoroboric acid is used in the tin-lead plating process to keep the metals
dissolved in the solution and to ensure a consistent deposition of the tin-lead alloy onto the circuit
board.

After the plating bath, the board is rinsed with water, scrubbed, and then dried to remove the
copper, spray etch solutions, and other materials. Rinsing ends the chemical reactions during plating
and prevents contamination or dragout from being released in the next bath or rinse water (dragout
is the plating solution that sticks to parts after the board has been taken out of the plating bath).
Dragout can occur in any bath step, not just in one plating bath. The tin-lead layer is generally
removed and the panel is electrically tested for irregularities in the electrical pathway and shorts.
Table 7 lists materials used during electroplating processes and highlights those listed on the NPI.

Table 7 - Materials Used in Copper and Tin-Lead Electro and Electroless Plating
     Processes

Type of Plating Electroplating Chemicals Electroless Chemicals
Copper Copper pyrophosphate b

Orthophosphate b
Nitrates a
Ammonia a
Acid copper a
Copper sulfate a
Sulfuric acid a

Hydrochloric acid a
Palladium chloride
Stannous chloride
Metallic tin pellets
Sodium hydroxide
Copper sulfate a
Formaldehyde a

Tin-Lead Tin-Lead a
Fluoroboric acid b
Boric acid a
Peptone

Tin chloride
Sodium hypophosphate b
Sodium citrate

Source: Queensland Department of Environment and Heritage, 1998.
a NPI-listed substance.
b  Compound or mixture containing one or more NPI-listed substance.
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Emissions generated, including wastes containing NPI-listed substances, generated during plating
include:

•  photoresist skins;
•  sludges from wastewater treatment (containing metals and acids, lead compounds, spent cyanide

plating bath solutions, and plating bath residues from the bottom of plating baths from plating
and etching operations where cyanides are used in the process);

•  spent acid solutions, waste rinsewaters, spent developing solutions, spent etchant, and spent
plating baths in the wastewater;

•  organic vapours from spent developing solution and spent resist removal solution; and
•  acid and ammonia fumes.

Step Five: Soldering Coating

Solder coating is used to add solder to PCB copper component before component assembly.
Manufacturers use several methods of solder coating, but all of them involve dipping the panel into
molten solder. The solder, an alloy consisting of 60 percent tin and 40 percent lead, coats the pads
and holes not covered by solder mask. The excess solder is removed with a blast of hot oil or hot
air. However, the hot oil or hot air does not remove the solder that has formed a chemical
(intermetallic) bond with the copper. The removal of the excess solder is called solder levelling.
The most common process is hot-air levelling. According to Printed Circuit Board Basics: Quick
and Easy Guide, a final solder coating thickness of 1.25µm to 30.50µm can be achieved with most
solder-levelling processes. Solder is only applied to desired areas so there is no metal or
objectionable fluid emitted to the wastestream.

Step Six: Electrical and Mechanical Testing

A cross-section is cut from a sample panel from each lot using a grinding process called routing,
and the plated holes are examined with a photomicrograph. Individual circuit boards are cut out of
panels that pass quality control. Routing generates particulate emissions that may contain copper,
lead, or other NPI-listed metals plated to the panel. However, in most instances, the particulate is
recycled. Electrical tests, dimensional and visual inspections, and quality audits are performed to
ensure compliance with customer expectations. Finally, the finished PCBs are packaged, labelled,
and shipped to the customer which in most cases is the original equipment manufacturer (OEM) or
contract electronic assembly company.

Step Seven: Printed Circuit Board Assembly and Soldering

After the PCBs are manufactured, the electrical components are attached during assembly.
Adhesives are applied to the boards, and then the components are attached and soldered to the
boards. Components are attached to the PCB by a process called soldering. There are several
different kinds of soldering processes, including wave, dip, and drag. In wave soldering, the PCB is
passed over the crest of a wave of molten solder, thereby permanently attaching the components to
the board. A type of chemical known as flux is used before soldering to facilitate the production of
the solder connection. Not only does flux clean the surface and remove oxidised material, it
prevents oxidation from occurring during the solder process. After the solder has been applied, flux
residue may be removed from the board.

Traditionally, CFCs (such as Freon 113) and 1,1,1-trichloroethane have been used to remove flux,
however the manufacture and import of these materials in Australia has been banned since January
1996 due to their ozone depleting characteristics and the industry has been forced to find alternative
chemicals. Many facilities have turned to deionised water. Although the residue may not affect the
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PCB’s performance, it may lower the board’s cosmetic quality. After soldering, the board may be
cleaned and dried. Many assemblies, however, are now looking at no-clean soldering operations.

Emissions generated during assembly include:

•  solder dross;
•  post-solder scrap boards;
•  filters; and
•  spent gaseous or semi-gaseous solvents from cleaning processes.

The emissions that may be generated during soldering, flux application, and cleaning include:
organic vapours; copper, lead, spent solvents, and spent deionised water into the wastewater; solder
dross; and wastewater treatment sludge. Solder dross is primarily oxidised solder skin that forms on
any molten solder exposed to oxygen and can be transferred to be recycled off-site.

Table 8 summarises emissions from all of the PCB manufacturing processes.

Table 8 - Emissions from Printed Circuit Board Manufacture
Process Air

Emissions
Water

Emissions
Solid-Waste
Emissions

Board
Preparation

Particulates,
acid fumes,
and VOCs

Spent acids and spent alkaline
solutions

Sludges containing organic
solvents and scrap board
material (metals)

Electroless
Plating

Spent electroless copper baths,
spent catalyst solutions, spent
acids

Waste rinse water and
sludges from wastewater
treatment

Imaging Organic
vapours and
acid fumes

Spent developing solutions,
spent resist material, spent
etchants, spent acid solutions,
aqueous metals

Range of spent solvents,
depending on concentration
and mixture of solvents.
Sludges from wastewaters

Electro-
plating

Acid fumes,
ammonia
fumes, and
VOCs

Spent etchants, spent acid
solutions, spent developing
solutions, spent plating baths,
lead compounds

Wastewater treatment
sludges, spent cyanide plating
bath solutions and residues

Soldering VOCs
PCB
Assembly
and Wiring

VOCs Metals (lead, nickel, silver, and
copper compounds), flux
residues, spent deionised
water, spent solvents

Solder dross, scrap boards,
wastewater treatment sludges
and residues

Adapted from: USEPA Office of Compliance Sector Notebook Project, September 1995.

2.3 Cathode Ray Tubes

The cathode ray tube (CRT) industry produces tube glass, colour picture tubes and single phosphor
tubes, television sets, and computer displays. There is virtually no television tube and computer
display manufacturers or CRT glass manufacturers located in Australia and, therefore, the CRT
profile of this Manual focuses on the production of colour picture tubes, single phosphor tubes, and
rebuilt tubes (collectively called CRTs). These products are the video display components of
televisions, computer displays, military and commercial radar, and other display devices.

Cathode ray tubes (CRTs) have four major components: the glass panel (faceplate), shadow mask
(aperture), electron gun (mount), and glass funnel. The glass funnel protects the electron gun and
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forms the back-end of the CRT. In response to electrical signals, the electron gun emits electrons
that excite the screen. The shadow mask forms a pattern on the screen. The shadow mask itself is a
steel panel with a mask pattern applied through one of several kinds of photolithography.

This Section summarises the manufacturing process for colour CRTs. This description groups CRT
manufacturing into six steps:

1. preparation of the glass panel and shadow mask;
2. application of the coating on the glass panel interior;
3. installation of the electron shield;
4. preparation of the funnel and joining to the glass panel/shadow mask assembly;
5. installation of the electron gun; and finishing.

Colour CRTs

The names of CRT operations may vary depending on the manufacturer, but the basic processing
sequence is identical in all colour CRT manufacturing facilities. Lead in CRT display components
and end-of-life concerns have been the most significant environmental issues in CRT
manufacturing.

Step One: Preparation of the Panel and Shadow Mask

The shadow mask is constructed from a thin layer of aluminium steel (referred to as a flat mask)
which is etched with many small slits or holes, and a metal frame that supports the flat mask. The
shadow mask serves as a template for preparing a pattern on the glass panel surface. Shadow masks
are commonly manufactured off shore, particularly in China and the ASEAN countries, and shipped
to CRT manufacturers in Australia. The shadow mask is then moulded to match the contour of the
glass panel’s interior surface and blackened in an oven to provide corrosion resistance. Finally, the
shadow mask is welded to a blackened metal frame, usually steel, which provides support.
Degreasing solvents and caustics are frequently used for cleaning the shadow mask assembly and
production equipment. Oils are used for lubricating the press and other production equipment.

The front-end glass panel is purchased from a glass manufacturer and shipped to the CRT
manufacturer. Metal pins, provided as part of the glass panel, are attached to the inside of the glass
to serve as connection points for the shadow mask.

The shadow mask is carefully positioned inside the glass panel. Steel springs are then placed over
the pins in the glass panel and attached to hook-plates or clips located on the mask assembly frame.
With the glass panel and shadow mask assembly positions fixed in relation to each other, the
springs are welded to the hook-plates. The glass panel and mask must remain as a matched pair
through the remaining processes. The glass panel and shadow mask preparation operation
frequently uses organic solvents or caustic cleaners for degreasing, oil for equipment maintenance,
and oxidisers, such as hydrogen peroxide, for cleaning reclaimed masks.

Emissions generated during this step include spent organic solvents emitted to wastewater and
vapours from degreasing tanks.

Step Two: Application of Coating to Panel Interior



The Computer and Electronics Industry 18

For the panel-mask to create images, a special coating is applied to the interior surface through a
process called screening. Screening, the most complex part of the manufacturing process, is
comparable to a photographic development process.

The glass panel undergoes the carbon stripe process, which uses organic photoresist, chromate,
deionised water, dilute acids and oxidisers, carbon slurry with binding agents, and surfactants to
produce the black and clear striped pattern called black matrix. The clear areas will eventually be
filled with colour-producing phosphors. The glass panels are coated with a photoresist, which
contains chromate as a catalyser. The panel is spun to even out the photoresist and then dried.

The shadow mask is re-inserted in the glass panel and a series of exposures are made on the panel
surface using ultraviolet (UV) light in a photolithography process. The light passes through the
mask openings to imprint the mask pattern on the photoresist. The mask also shadows the areas of
the photoresist that will not be exposed. When UV light contacts the photoresist, polymerisation
occurs, and the exposed areas become less soluble in water than in the non-exposed areas.

After the exposure, the shadow mask is removed and the glass panel is sprayed with water to
remove the non-polymerised material. The imprinted pattern of exposed photoresist remains on the
glass panel. The glass panel is then coated and developed again. The resulting image is essentially a
negative image of the original photoresist exposure pattern.

During the phosphor stripe process, three phosphor colours (green, blue, and red) are used to make
a colour CRT and are applied using the same steps as the carbon stripe process. The phosphor stripe
process uses various chemicals and NPI-listed substances, including phosphor slurries containing
metals (such as zinc compounds) and organic photoresists, chromate, deionised water, dilute
oxidisers, and surfactants. The phosphor materials that are spun off the panels and removed in the
developers are recovered and reclaimed either on-site or by a phosphor recycler. The reclaiming
process involves the use of acids and caustics, chelating agents, and surfactants.

Two coatings are then added to the glass panel, which now has the black matrix and the three
phosphor colours on it: lacquer (a wax-like layer) to smooth and seal the inside surface of the
screen, and aluminium to enhance brightness. The panel is then ready to be joined to the back end
of the CRT, known as the funnel. In preparation for joining, the panel edges must be cleaned to
remove all traces of contaminants. A clean edge is critical to ensuring a good panel-to-seal
connection in the finished CRT. The shadow mask and glass panel, are then reattached. Chemicals
used in these processes include organic solvents and ethanol, caustics, silica-based coatings,
aluminium, acids, ammonia, and deionised water. The material removed in the cleaning process is
often transferred off-site to a smelter to recover metals and sulfites.

Emissions generated from this step include:
•  vapours from the lacquer area;
•  wastewater containing deionised water, acids, oxidisers, carbon slurry, surfactants, chromate,

phosphor solutions, chelating agents, caustics, organic solvents, alcohols, silica-based coatings,
ammonia, zinc, and aluminium;

•  process cooling waters, liquid wastes from precipitation, washing, filtration, and scrubber
blowdown;

•  lacquer wastes from spun off and over-sprayed lacquer; and
•  lacquer remaining in lacquer containers.

Step Three: Installation of the Electron Shield
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Most CRT manufacturers employ an internal electron shield to prevent stray electrons from
reaching outside the screen area. Computer monitor CRTs often use external shielding, which is
installed on the outside of the CRT’s glass bulb. Before installation, the shields are cleaned with
degreasing solvents or caustic cleaners. The internal-type electron shield is made of thin aluminium
and is typically welded to the shadow mask assembly before the panel and shadow mask are
connected with the funnel. Metal (steel) springs are welded to the mask frame at this time. The
springs provide an electrical connection between the mask and the funnel interior surface.

Emissions generated from these processes include electron shield degrease wastewaters containing
solvents and metals from the welding.

Step Four: Preparation of the Funnel and Joining to Panel-Mask Assembly

The back end of the CRT (funnel) is purchased from a glass vendor and washed prior to use. The
funnel is made of high lead content glass and the resulting wash water contains elevated lead levels.
After the funnel is washed, the interior surface is coated with a black graphite coating which is a
good electrical conductor and a non-reflective coating. The seal edge of the funnel is cleaned to
facilitate bonding with the panel, and frit or solder glass is applied in a bead along the entire
surface of the seal edge. The frit, approximately 70 percent lead, has the consistency of toothpaste
or caulking. The viscosity of the frit is controlled by the addition of organic solvents. The frit serves
as an adhesive to join the panel-mask assembly to the funnel.

After the frit is applied, the panel-mask assembly is connected to the funnel, and the whole glass
package is placed in a positioning clamp to hold the two parts in place. The connected panel-mask
and funnel assembly is then exposed to high temperatures in an oven to fuse the frit joint between
the panel and funnel at the seal edges. The frit forms a strong bond between the two pieces of glass.
During the frit-seal fusion process, the organic chemicals from the screening operation and in the
frit are burned out of the CRT. The organic materials must burn cleanly to minimise any remaining
residue.

Emissions generated include wastewaters contaminated with spent black graphic, lead, and
chemicals associated with the funnel wash, frit application, and seal surface cleaning, including
organic solvents.

Step Five: Installation of the Electron Gun

Each CRT contains three guns: one dedicated to each of the phosphor colours used in the screen
(red, green, and blue). To produce an electron gun, several metal components are assembled and
loaded onto spindles to align the various elements. Glass parts are placed into fixture blocks and
heated. When the glass reaches the proper temperature, the metal parts are embedded in the glass.
The combination of metal parts and glass make up the gun. The guns are cleaned with organic
solvents or caustic cleaners before they are mounted in the neck of the CRT funnel. Materials
commonly found in the gun assemblies include metals, high lead glass stem (for electrical
connection feed-through and exhaust purposes), ribbon connectors, and other manufacturer-specific
parts.

The gun assembly is then inserted in the neck of the CRT funnel. The gun is aligned and the CRT
funnel neck is fused to the gun by rotating the parts in front of open flame burners. An additional
component is welded to the gun assembly to allow for removal of gases from the electron gun in
subsequent steps.

Emissions generated from this step include waste lead glass from breakages and wastewaters
contaminated with spent organic solvents and caustic cleaners from mount cleaning.
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Step Six: Finishing

The CRT bulb is still open to the atmosphere after the gun mount is sealed in the neck of the funnel.
To complete the tube, the gases are removed by applying a vacuum to the bulb. Organic solvents
are used to clean and maintain the vacuum pumps.

The bulb is aged by an electronic treatment applied to the gun or mount. The CRT is then coated
with an external carbon black paint, and a metal band is placed around the outside of the panel with
adhesives for implosion protection and safety. The band also provides mounting brackets for
installing the CRT. The finished tube is tested in a high voltage testing station, and the CRT tested
thoroughly to ensure that it meets all specifications before shipment. Each tube is packaged prior to
shipment to the customer.
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Emissions generated from finishing processes include spent solvents and VOC emissions.

In some cases where the bulb face needs a special application, such as reference lines for an
oscilloscope, a separate panel and funnel are used. A photoresist and mask are used to apply the
reference lines on the panel. The single phosphor is applied in the same way as for a one-piece bulb,
using a settling solution that contains potassium silicate and, usually, an electrolyte.

Tube Salvage

Cathode ray tubes may or may not be salvaged. Picture tube salvage operations reclaim spent or
rejected picture tubes and return them to production. Salvage operation processes include a panel-
funnel acid defrit, acid cleaning of panels and funnels (usually with nitric acid), and cleaning of the
shadow mask. These reclaimed components are returned to the process for reuse or are returned to
the glass manufacturer for recycling. A product with knocks, scratches, or chips is repaired. New
necks are spliced onto funnels. Electron guns are usually discarded. Glass that cannot be used
because of serious defects is recycled back to a glass plant directly or is transferred off-site for
cleaning and segregation before going to a glass plant.

CRT technology is a mature and efficient process; however, the use of a new technology called Flat
Panel Displays (FPD) is becoming more common. FPDs offer certain environmental advantages
over CRTs because of the tenfold reduction in the glass required with associated substantial energy
savings. Existing performance deficiencies, such as poorer screen brightness and substantially
higher prices, are currently hampering the widespread incorporation of FPDs into electronic
products.

Table 9 summarises the likely emissions from all CRT manufacturing processes.

Table 9 - Emissions Generated from Cathode Ray Tube Manufacture
Process Air

Emissions
Water

Emissions
Land

Emissions
Panel and Shadow
Mask

Solvent vapours Spent solvents Glass (lead) from
breakages

Application of
Coating to Panel
Interior

Vapours from
lacquer area

Spent photoresists, deionised water,
acids, oxidisers, carbon slurry,
surfactants, chromate, phosphor
solution,  chelating agents, caustics,
solvents, alcohols, ammonia

Lacquer wastes
containing organic
solvents

Installation of
Electron Shield

Electron shield degrease and cleaners
and metals

Preparation of
Funnel & Joining
to Panel-Mask
Assembly

Funnel wash, seal surface cleaning,
and frit application wastewaters

Frit contaminated
clothing, instruments,
utensils, unusable frit
glass (lead), glass (lead)
from breakage and off-
spec product

Installation of
Electron Gun

Spent solvents and caustic cleaners Glass (lead) from
breakages

Finishing VOCs Spent solvents
Adapted from: USEPA Office of Compliance Sector Notebook Project, September 1995.

3.0 Emission Estimation Techniques: Acceptable Reliability and
Uncertainty

 Several techniques are available for calculating emissions of NPI-listed substances from electronics
and computer manufacturing operations. The best emission estimation technique (EET) to use
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depends on the emission source being evaluated, available data, available resources, and the degree
of accuracy required by the facility in conducting the estimate.

In general, there are four types of emission estimation techniques from calculating emissions from
electronic and computer manufacturing processes:

•  mass balance;
•  emission factors;
•  source tests; and
•  engineering calculations.

If you estimate your emission by using any of these EETs, your data will be displayed on the NPI
database as being of ‘acceptable reliability’. Similarly, if your relevant environmental authority has
approved the use of EETs that are not outlined in this handbook, your data will also be displayed as
being of ‘acceptable reliability’.

This Manual seeks to provide the most effective emission estimation techniques for the NPI
substances relevant to this industry. However, the absence of an EET for a substance in this
handbook does not necessarily imply that an emission should not be reported to the NPI. The
obligation to report on all relevant emissions remains if reporting thresholds have been exceeded.

You are able to use emission estimation techniques that are not outlined in this document.
You must, however, seek the consent of your relevant environmental authority.  For example,
if your company has developed site-specific emission factors, you may use these if approved
by your relevant environmental authority.

You should note that the EETs presented in this manual relate principally to average process
emissions.  Emissions resulting from non-routine events are rarely discussed in the literature, and
there is a general lack of EETs for such events.  However, it is important to recognise that
emissions resulting from significant operating excursions and/or accidental situations (eg. spills)
will also need to be estimated.  Emissions to land, air and water from spills must be estimated and
added to process emissions when calculating total emissions for reporting purposes.  The emission
resulting from a spill is the net emission, ie. the quantity of the NPI reportable substance spilled,
less the quantity recovered or consumed during clean up operations.

The usage* of each of the substances listed as Category 1 and 1a under the NPI must be estimated
to determine whether the 10 tonnes (or 25 tonnes for VOCs) reporting threshold is exceeded.  If the
threshold is exceeded, emissions of these Category 1 and 1a substances must be reported for all
operations/processes relating to the facility, even if the actual emissions of the substances are very
low or zero.
* Usage is defined as meaning the handling, manufacture, import, processing, coincidental production or other uses of
the substances.

3.1 Mass Balance

A mass balance approach may be used to estimate emissions when the quantities of a material used,
recycled, emitted, and disposed of are known. For liquid applications, such as wet chemical stations
or coating/solvent application stations, usage figures would generally be in litres. The difference (by
mass) of the amount of a liquid used and the amount of the liquid recovered, either through product
recovery or disposal, is assumed to equal emissions to atmosphere.

Similarly, estimating emissions for gaseous operations would require knowledge of gas usage
containing NPI-listed substances. Annual usage may be based on gross purchase amount (in cubic
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metres). When operations have several formulas for different batches, a conservative emissions
estimate for each listed substance may be based on the formula with the highest listed substance
usage. This approach is suitable for these types of listed pollutants (xylenes, ethylbenzene, toluene,
etc) because they are not involved in chemical reactions. Also, their usage and emission rates may
already be tracked for purchasing reasons.

For other listed substances emitted at electronic and computer manufacturing facilities, a mass
balance may not be appropriate due to the uncertainty in the extent of the chemical reactions
occurring. For example, while hydrofluoric acid is used in baths and spray tools, it is also formed
from the use of PFCs, such as hexafluoroethane, sulfur hexafluoride, and nitrogen trifluoride, in dry
etching and chemical vapour deposition processes.

3.2 Emission Factors

Emission factors are used to estimate emissions based on known relationships between process rates
and emission rates. The use of emission factors to estimate emissions from electronics and
computer manufacturing facilities is an appropriate approach for NPI reporting. Development of an
accurate emission factor would require detailed knowledge of the process conditions and chemical
usage rates during the time period for which emissions are known. Emission factors should be
applied to similar type processes utilising similar or identical chemical recipes.

Emission factors are available both for wastewater emissions and from semiconductor
manufacturing activities for a wide range of NPI-listed substances and are based on the results of
source tests performed on individual facilities.  The reader should be aware that, in most cases,
emission factors adopted for the NPI are averages of available industry-wide data, usually US or
European and seldom Australian, with varying degrees of quality. Emission factors are, however, an
acceptable technique for estimating emissions for the NPI where estimations of emissions are
required to quantify medium to long-term emission trends.

Basically, an emission factor is the pollutant emission rate relative to the level of source activity and
is usually expressed as the weight of a substance emitted multiplied by the unit weight, volume,
distance, or duration of the activity emitting the substance. For example, milligrams of
dichloromethane emitted per litre of wastewater discharged.

Every emission factor has an associated emission factor rating (EFR) code.  This rating system is
common to EETs for all industries and sectors and therefore, to all Industry Handbooks. They are
based on rating systems developed by the United States Environmental Protection Agency
(USEPA), and by the European Environment Agency (EEA). Consequently, the ratings may not be
directly relevant to Australian industry. Sources for all emission factors cited can be found in
Section 5.0 of this Manual. The emission factor ratings will not form part of the public NPI
database.

When using emission factors, the reader should be aware of the associated EFR code and what that
rating implies. An A or B rating indicates a greater degree of certainty than a D or E rating. The less
certainty, the more likely that a given emission factor for a specific source or category is not
representative of the source type. These ratings notwithstanding, the main criterion affecting the
uncertainty of an emission factor remains the degree of similarity between the equipment/process
selected in applying the factor, and the target equipment/process from which the factor was derived.

The EFR system is as follows:
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A - Excellent
B - Above Average
C - Average
D - Below Average
E - Poor
U - Unrated

3.3 Direct Measurement or Sampling Data

While technologies such as gas chromatography, mass spectrometry, and infrared spectroscopy may
be available for use at electronics and computer manufacturing facilities, Australian data is not
currently available to evaluate their actual use in the industry. Test methods (from the US
Environmental Protection Agency) may also be used to obtain emission estimates from
semiconductor, PCB, and CRT manufacturing processes for specific classes of compounds. The
reader should contact their relevant State or Territory environment authority to obtain information
on these test methods.

Because vent or other outlet testing is relatively uncommon for Australian electronics and computer
manufacturing facilities, emissions test data for these facilities are generally only available in the
form of monitoring results for NPI-listed substances conducted for compliance with Worksafe
Australia Exposure Standards for Atmospheric Contaminants in the Workplace Environment.
However, while these data may be used in conjunction with exhaust system flow rates to calculate
total VOC or speciated organic solvent emissions from a room, floor, or building, these emissions
are often below reliable detection limits due to high flow rates and low concentrations of the
pollutants of interest.
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3.4 Engineering Calculations

In the absence of other data, engineering calculations may be used to estimate emissions from some
electronic and computer manufacturing processes. For example, for any process that involves the
transfer of a chemical species from the liquid phase to the vapour phase, the saturation
(equilibrium) vapour pressure and exhaust flow rate from the process can be used to establish the
upper limit of emissions from that process. This is a conservative approach because of the
assumption that the airflow is saturated.

Table 10 summarises the most reliable EETs to use for specific NPI-listed substances from
electronic and computer manufacturing processes.

Table 10 - Summary of EET Reliability for Electronic and Computer Manufacturing
       Processes
NPI-Listed Most Reliable Alternative EETs
Substance EET Available

VOCs (both total and
speciated)

Mass Balance Source Testing
Engineering Calculations
Emission Factors

Inorganic compounds
(including acids and
fluoride compounds)

Source Testing Mass Balance
Engineering Calculations
Emission Factors

Source: Queensland Department of Environment and Heritage, 1998.
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4.0 Estimating Emissions

The first step in undertaking emission estimations at an electronics and computer manufacturing
facility is generally to identify the emission points. An effective means of evaluating points of
emission for NPI-listed substances is to draw a process flow diagram identifying the operations
performed at a reporting facility. Figure 1 below is an example flow diagram for a semiconductor
manufacturing facility.

Silicon Compound
Deposition

Application of
Photoresist

UV Light Exposure

Developing

Etch

Deionised Water Rinse

Doping

Acid or Solvent Rinse

Metal Deposition

Dicing into ChipsPassivation

Silicon Wafer

Acid Spent Acid

Deionised
Water

Wastewater

Exhaust

Spent Acid or Solvent
Acid or

Solvent

Assembly

Figure 1 - Process Flow Diagram of a Semiconductor Manufacturer
Source: Queensland Department of Environment and Heritage, 1998.
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Because each facility is unique, reporting facilities are strongly urged to develop flow diagrams for
their own particular operations that detail the input of materials and chemicals and the emissions
sources resulting from the operation of each unit.

Emissions to the atmosphere (to air), wastewater (to water), and via solid wastes (to land) are likely
to be the primary emission points to consider. If water is treated on-site, sludges or other wastes
containing listed substances may be created. Other emissions may come from discarded containers
or samples, vessel washings, or, for some substances, volatilisation to the air. Facility operators
should ensure that all emissions are accounted for when reporting.

After all the NPI-listed substances and emission sources at the reporting facility have been
identified, the procedures for estimating emissions, of EETs, can proceed. The usual approach
entails first estimating emissions from emission sources across a facility for all substances
triggering a threshold and then, based on the disposal method used, determining whether emissions
from a particular emission source are to air, water, land, or an off-site disposal facility. (The off-site
transfer of NPI-listed substances, including listed substances contained in wastes, does not require
reporting, but may nevertheless require characterisation and estimation if emissions are being
estimated from a mass balance).

Table 11 lists the variables and symbols used in the equations and examples throughout this section.

Table 11 - List of Variables and Symbols
Variable Symbol Units

Concentration of pollutant i entering the
process

Cin parts per million volume dry in Qin,
ppmvd

Concentration of pollutant i leaving the
process as a product

Cpr parts per million volume dry in Qpr,
ppmvd

Concentration of pollutant i leaving the
process as waste or recycled off site

Crec parts per million volume dry in Qrec,
ppmvd

Molecular weight MW kg/kg-mole
Hourly volume of wastewater V litres per hour, L/hr
Molar volume M cubic metres (m3)/kg-mole
Emission factor for pollutant i EFi kg/units
Emissions per hour of pollutant i Ei kg/hr
Annual emissions of pollutant i Ekpy,i kg/yr
Material entering the process Qin litres per hour, L/hr
Material leaving the process as a
product (or amount of product)

Qpr litres per hour, L/hr

Material leaving the process as waste or
recycled off site

Qrec litres per hour, L/hr

Volumetric flow rate of stack gas Qa actual cubic metres per second (m3/s)
Volumetric flow rate of stack gas Qd dry cubic metres per second (m3/s)
Average concentration of pollutant i Ca,i ppmvd
VOC content of material CVOC kg/L
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Table 11 - List of Variables and Symbols (cont’)
Variable Symbol Units

Percentage by weight of pollutant i in
material

wt% %

Temperature correction for differences
in temperature during test

Kt dimensionless

Pressure correction for differences in
pressure during test

Kp dimensionless

Activity rate A units/hr
Saturation vapour pressure of pollutant i Psat,i kilopascals, kPa
Total pressure Pt kPa
Density of pollutant i (or vapour density
of pollutant i )

ρi kg/m3

Density of material ρm kg/L
Evaporation rate of pollutant i Wkpy,i kg/yr
Gas-phase mass transfer coefficient for
VOC species i

Ki m/sec

Surface area area m2

Vapour pressure of pollutant i Pvap,i kPa
Universal gas constant R 8.314 kPa * m3/(kgmol * K)
Metered volume at standard temperature
and pressure

Vm, STP m3

Wind speed U km/hr
Temperature T oCelsius, specify °C (or if necessary

Kelvin, ie. absolute temperature, K) in
each equation

Annual operating hours OpHrs hours/year
Source: Queensland Department of Environment and Heritage, 1998.

4.1 Using Mass Balance

4.1.1 Estimating Emissions to Air

Mass balance is the recommended EET for estimating emissions of total VOCs and speciated
organics in solvents, etchants, and cleaners. Total VOC emissions from electronic and computer
manufacturing facilities may be estimated by application of Equation 1 where the pollutant
concentration is constant throughout the process.

Equation 1
Ei = (Qin - Qout) * Ci

where:

Ei = total emissions of pollutant i, kg/hr
Qin = material entering the process, L/hr
Qout = material leaving the process as waste, recycled, 

or in product, L/hr
Ci = concentration of pollutant i, kg/L

Example 1 illustrates the application of Equation 1.

Example 1 - Using a Mass Balance to Estimate VOC Emissions
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This example shows how VOC emissions may be calculated using Equation 1 for a cleaning
process given the following data:

Qin = 6 L/hr
Qout = 4 L/hr
CVOC = 0.85 kg VOC/L

EVOC = (Qin  -  Qout)  *  CVOC
= (6 L/hr - 4 L/hr)  *  0.85 kg VOC/L
= 1.7 kg/hr

The term Qout may actually cover several different fates for an individual listed substance. This
could include the amount recovered or recycled, the amount leaving the process in the
manufactured product, the amount leaving the process in wastewater, or the amount of material
transferred off-site as hazardous waste or to landfill. A thorough knowledge of the different fates for
the pollutant of interest is necessary for an accurate emission estimate to be made using the mass
balance approach. Where the pollutant concentrations are different in the process and waste
materials to the stream entering the process Equation 2 can be used.

Equation 2
Ei = Qin * Cin - Qpr * Cpr - * Qrec * Crec

where:

Ei = total emissions of pollutant i, kg/hr
Qin = material entering the process, L/hr
Qpr = amount of material leaving the process

as a product (or amount of product), L/hr
Qrec = material leaving the process as waste or

recycled off-site, L/hr
Cin = concentration of pollutant i in Qin, kg/L
Cpr = concentration of pollutant i in Qpr, kg/L
Crec = concentration of pollutant i in Qrec, kg/L

Speciated VOC emissions may be estimated by a mass balance approach using Equation 3.
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Equation 3
Ei = (Qin  -  Qout)  *  ρm *  (wt%i) /100

where:

Ei = total emissions of pollutant i, kg/hr
Qin = material entering the process, L/hr
Qout = material leaving the process as a transfer, or as an article 

or product, L/hr
ρm = density of material, kg/L
wt%i = percentage by weight of pollutant i in material, %

The use of Equation 3 should provide a reasonably accurate estimate in most cases, especially if
other emissions are small compared with air emission losses. Individual emissions of organic
chemicals from storage tanks should be estimated using the methods and procedures outlined in the
Fuel and Organic Liquid Storage EET Manual.

Example 2 illustrates the application of Equation 3.

Example 2 - Using a Mass Balance to Speciate VOC Emissions

This example shows how toluene emissions may be calculated using Equation 3 for a cleaning
process using toluene-containing solvent given the following data:

Qin = 6 L/hr
Qout = 4 L/hr
ρsolvent = 0.87 kg /L
wt%toluene = 25%

Etoluene = (Qin  -  Qout)  *  dsolvent  *  (wt%toluene  /  100)
= (6 L/hr - 4 L/hr) * 0.87 kg /L * (25/100)
= 0.435 kg/hr

4.1.2 Estimating Emissions to Water

If no wastewater monitoring data exists, emissions to process water can be calculated based on a
mass balance of the process, shown by Equation 4.

Equation 4
Ekpy,i = (Qin  -  Qout)

where:

Ekpy,i = emissions of pollutant i, kg/yr
Qin   = amount of pollutant i used, kg/yr
Qout = amount of pollutant i incorporated into product + treated 

on-site + transferred off-site in the reporting year, kg/yr

Where a facility uses a listed mineral acid or base, with this acid or base being effectively
neutralised in use or during wastewater treatment (to a pH of 6 to 8, as required by most State and
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Territory effluent standards), no emission quantities should be reported. If the acid or base is itself
transformed into another listed substance, however, the quantity of this substance coincidentally
produced must be determined to assess if a threshold value has been reached. For example, sulfuric
acid often yields hydrogen sulfide (an NPI-listed substance) in effluent streams.

4.1.3 Estimating Emissions to Land

Wastewater treatment may transport the reportable substance to a sludge. Facilities are often
required to obtain data on the concentration of metals and other substances in sludges as part of
their licensing requirement and this data can be used to calculate the emissions as kilograms of
sludge times concentrations of the substance in the sludge. Alternatively, the loss in the sludge can
be estimated by application of Equation 5. Although listed substances in sludge transferred off-site
for waste disposal/treatment do not require reporting, determining this loss may be a necessary step
in the application of such a mass balance approach.

Equation 5
ASkpy,i = (PLi  -  WLi ) * OpHrs

where:

ASkpy,i = amount of pollutant i in sludge, kg/yr
PLi  = process losses of pollutant i, kg/hr
WLi = losses of pollutant i in wastewater, kg/hr
OpHrs = operational hours, hr/yr

For many listed substances used and emitted during chemical processes, some degradation in
treatment may occur so not all of the substance is transferred to the sludge. Facilities can estimate
the amount of reportable compounds in the sludge by using measured data, or by subtracting the
amount biodegraded from the total amount removed in treatment. The amount of removal can be
determined from operating data, and the extent of biodegradation might be obtained from published
studies. If the biodegradability of the chemical cannot be measured or is not known, reporting
facilities should assume that all removal is due to absorption to sludge.

4.2 Using Sampling Data

4.2.1 Estimating Emissions to Air

Sampling test methods can be used to estimate organic and inorganic pollutant emission rates from
semiconductor and other electronic manufacturing processes. Airflow rates can be determined from
flow rate metres or from pressure drops across a critical orifice (an opening).

Sampling test reports often provide chemical concentration data in parts per million by volume
(ppmv). If the concentration is known, an hourly emission rate can be determined using Equation 6.

Equation 6
 Ei = (Ci * MWi * Qd * 3600) / [22.4 * {(T + 273)/273} * 106]

 where:
 
 Ei = total emissions of pollutant i, kg/hr
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 Ci = concentration of pollutant i, ppmv (volume of pollutant gas/106

 volumes of dry air)
 MWi = molecular weight of pollutant i, kg/kg-mole
 Qd = stack gas volumetric flow rate, m3 /s
 22.4 = volume occupied by 1 mole of ideal gas at standard
 temperature and pressure (0°C and 101.3 kPa), m3/kg-mole
 3 600 = conversion factor, s/hr
 T = temperature of gas sample, °C

106 = conversion factor from ppmv to volume fraction

Emissions in kilograms per year can be calculated by multiplying the average hourly emission rate
(kg/hr) from Equation 6 by the number of operating hours (shown in Equation 7 below) or by
multiplying an average emission factor (kg/L) by the total annual amount of material used (L).

Equation 7
Ekpy,i = Ei  *  OpHrs

where:

Ekpy,i = annual emissions of pollutant i, kg/yr
Ei  = total hourly emissions of pollutant i, kg/hr
OpHrs = annual operating hours, hr/yr

Concentration data obtained from source testing may come in a variety of units, including parts per
million volume (ppmv), or grams per cubic metre (g/m3), and in a variety of conditions, such as
wet, dry, or excess O2. This may require conversion of concentration data to consistent units for
compatibility with the equations given above.

Example 3 illustrates the use of Equation 6, and Equation 7.
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 Example 3 - Estimating Ammonia Emissions to Atmosphere
 
 This example shows how annual ammonia (NH3) emissions can be calculated using the data
obtained from a stack or other point source emission points. Using a known ammonia concentration
and an exhaust gas temperature of 25°C (298 K), annual emissions are calculated using Equation 6.
 
 Given:
 Ci = 15.4 ppmv MWi = 17 kg/kg-mole of ammonia
 Qd = 8.48 m3/s OpHrs = 1760 hr/yr
 T = 25°C (298 K)
 
 Hourly emissions of NH3 are calculated using Equation 6:
 
 ENH3 = (Ci * MWi * Qd * 3600) / [22.4 * {(T + 273)/273} * 106]

 = (15.4 * 17 * 8.48 * 3600) / [22.4 * (298/273) * 106]
 = 3.269 * 10-1 kg/hr

 
 Annual emissions of NH3 are calculated using Equation 7:
 
 Ekpy,NH3 = ENH3  * OpHrs
 = 3.269 * 10-1 * 1760

 = 575.34 kg/yr
 

4.2.2 Estimating Emissions to Water

Because of the significant environmental hazards posed by emitting toxic substances to water, most
facilities emitting NPI-listed substances to waterways are required by their relevant State or
Territory environment authority to closely monitor and measure these emissions. This existing
monitoring data can be used to calculate annual emissions by the use of Equation 8.

Equation 8
Ekpy,i = Ci * V * OpHrs / 106

where:

Ekpy,i = emissions of pollutant i, kg/yr
Ci = concentration of pollutant i in wastewater, mg/L
V = hourly volume of wastewater, L/hr
OpHrs = operating hours per year for which data apply, 

hr/yr
106 = conversion factor, mg/kg

In applying Equation 8 to water emission calculations, monitoring data should be averaged and only
representative concentrations used in emission calculations.

4.3 Using Emission Factors

4.3.1 Estimating Emissions to Air
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Emission factors may be used to estimate VOCs, speciated VOCs, and inorganic pollutant
emissions from electronic and computer manufacturing processes using Equation 9.

Equation 9
Ekpy,i = [A * OpHrs] * EFi * (1 - CEi/100)

where:

Ekpy,i = emissions of pollutant i, kg/yr
EFi = emission factor for pollutant i, kg/units
A = activity rate, units/hr
OpHrs = annual operating hours, hr/yr
CEi = overall control efficiency for pollutant i, %

Example 4 illustrates the application of Equation 9. Currently there are no industry emissions
factors available specific to electronic and computer manufacturing processes, and emission factors
will need to be developed by facilities reporting to the NPI specific to the processes or operations of
interest.

Example 4 - Using Emission Factors to Estimate Emissions to Air

This examplea shows how HF emissions may be calculated using emission factors and Equation 9
given the following data:

EFHF = 6.0 * 10-3 kg HF/wafer
A = 30 wafers/hr
OpHrs = 1 750 hr/yr
CEHF = 0 (since EFHF is a controlled figure)

Ekpy,HF = [A * OpHrs] * EFHF * [1 - CEi/100]
= [30 wafers/hr * 1 750 hr/yr] * 6.0 * 10-3 kg /wafer * [1 - 0/100]
= 315 kg/yr

a The emission factor used in this example was developed with site-specific data from a
semiconductor manufacturing facility.
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4.3.2 Estimating Emissions to Water

Table 12 gives minimum and maximum concentrations for many NPI-listed substances contained in
untreated wastewaters from US semiconductor facilities. In the absence of site-specific monitoring
data, this US data can be used as emission factors to estimate emissions to wastewater. Equation 10
shows this calculation.

Equation 10
Ekpy,i = Ci * V * OpHrs/106 * [1 - (CEi/100)]

where:
Ekpy,i = emissions of pollutant i, kg/yr
Ci = concentration of pollutant i in wastewater, mg/L
V = hourly volume of wastewater, L/hr
106 = conversion factor, mg/kg
CEi = overall emission control efficiency of the wastewater 

treatment operation for pollutant i, %

Where wastewaters are treated on-site, emissions must be adjusted to reflect the effectiveness of the
treatment. Where available, data on the operation of the specific treatment facility should be used.
Example 5 illustrates the application of Equation 10 showing how to adjust an emission factor
equation to take account of the control efficiency of a wastewater treatment operation.

Example 5 - Using Emission Factors to Estimate Emissions to Water

Using published wastewater emission concentrations, annual wastewater emissions of chloroform
can be calculated using Equation 10 and the maximum concentration reported from untreated
wastewater (from Table 12). Assume the facility operates for 260 days during year, an average 4
000 000 litres of water is used daily, and the facility’s wastewater treatment plant has an efficiency
for chloroform of 87% following screening and trickling filter.

Ekpy,chloroform = Ci * V  *  OpHrs/106 * [1 - (CEi/100)]

Ekpy,chloroform = 2.6 mg/L * 4 000 000 L/day * 260 day/yr/
106 mg/kg *  [1 - (87/100)]

= 351.5 kg/yr
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Table 12 - Concentration of NPI-Listed Substances in Untreated Wastewater from US
       Semiconductor Manufacturing Facilities

NPI-Listed Substance
Minimum

Concentration
(mg/L)

Maximum
Concentration

(mg/L)
Benzene < 0.01 0.190
Chloroform 0.004 2.6
Dichloromethane (methylene chloride) 0.005 2.4
Phenol 0.0004 5.7
Bis(2-ethylhexyl)phthalate 0.002 0.750
Ethylbenzene 0.0002 0.107
Tetrachloroethylene (perchloroethylene) 0.0002 0.80
Toluene 0.0002 0.14
Trichloroethylene 0.0049 3.5
Antimony < 0.0005 0.187
Arsenic < 0.003 0.067
Beryllium < 0.001 < 0.015
Cadmium < 0.001 0.008
Chromium (total) < 0.001 1.150
Cobalt < 0.001 0.48
Copper < 0.005 2.588
Cyanide < 0.005 0.01
Lead < 0.04 1.459
Manganese < 0.001 0.209
Mercury < 0.001 0.051
Nickel 0.005 4.964
Selenium < 0.002 0.045
Zinc 0.001 0.289

Source: USEPA AP-42, 1988.

4.4 Using Engineering Calculations

 Theoretical and complex equations or models can be used for estimating emissions from electronic
and computer manufacturing processes. Inputs for theoretical equations generally fall into the
following categories:

(1) chemical/physical properties of the material involved, such as vapour pressure and vapour
molecular weight;

(2) operating data, such as the amount of material processed and operating hours; and
(3) physical characteristics and properties of the source, such as tank colour and diameter.

Engineering equations are suitable for estimating emissions from several chemical manufacturing
processes. For example, for any process involving a transfer of a chemical species from the liquid
phase to the vapour phase, the saturation or equilibrium vapour pressure and exhaust flow rate from
the process can be used to establish the upper limit of emissions from that particular process. This is
a conservative approach because of the assumption that the total airflow is saturated. An alternative
technique based on mass transfer kinetics does not assume airflow saturation and results in a lower
emission rate estimate than would be obtained assuming saturation.

4.4.1 Estimating Emissions Using Mass Transfer Kinetics

An EET based on mass transfer kinetics is shown by Equation 11.
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Equation 11
Ekpy,i = (MWi * Ki * area * Pvap,i * 3600 * OpHrs) / (R * T)

where:

Ekpy,i = emission (evaporation rate) of pollutant i, kg/yr
MWi = molecular weight of pollutant i, kg/kg-mole
Ki = gas-phase mass transfer coefficient for VOC

species i, m/sec
= [0.00438 * (0.62138 * U)0.78 * (18/MWi)1/3]/3.2808

U = wind speed, km/hr
area = surface area, m2

Pvap,i = vapour pressure of pollutant i, kPa
3600 = conversion of 3600 sec/hr
OpHrs = hours of operation each year hr/yr
R = universal gas constant (8.314 kPa * m3 /(kg-mol * K))
T = temperature, K

Example 6 illustrates the application of this equation.

Example 6 - Using Mass Transfer Kinetics

This example shows how methanol emissions may be estimated using mass transfer kinetics and
Equation 11 given the following data:

MWmethanol = 32 kg/kg-mole
U = 7.24 km/hr
area = 0.6 m2

Pvap,methanol = 13.16 kPa
3600 = 3600 sec/hr
OpHrs = 1000 hr/yr
T = 296 K
R = 8.314 kPa * m3 /(kg-mol * K)

First, calculate the mass transfer coefficient, Ki:

Ki = [0.00438 * (0.62138 * U)0.78 * (18/MWi)1/3]/3.2808
= [0.00438 * (0.62138 * 7.24 km/hr)0.78  *  (18/32 kg/kg-

mole)1/3/3.2808]
= 0.0035 m/s

Then, calculate Ekpy,methanol:

Ekpy,methanol = (MWmethanol * Ki * area * Pvap,methanol * 3600 * OpHrs) / (R * T)
= (32 kg/kg-mole * 0.0035 m/sec * 0.6 m2 * 13.16 kPa * 3600

sec/hr * 1000 hr/yr)/{(8.314 kPa * m3/(kg-mol * K)) * (296 K)}
= 1294 kg/yr

4.4.2 Estimating Emissions from Spills
 
 A vaporisation equation can be used to estimate the evaporation rate of a liquid chemical spill if the
size area of the spill is known or can be estimated. This is illustrated by Equation 12.
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Equation 12
 Ei = (MWi* Ki* area * Pi* 3 600 * HR) / (R * T)
 
 where:
 
 Ei = emissions of VOC species i from the spill, kg/event
 MWi = molecular weight of VOC species i, kg/kg-mole
 Ki = gas-phase mass transfer coefficient for VOC species i, 

m/sec
 area = surface area of spill, m2

 Pi = partial pressure of VOC species i (if a pure chemical is 
spilled) or the partial pressure of chemical i (if a mixture 

of VOCs is spilled) at temperature T, kPa; the partial 
pressure of VOC species i (Pi) may be calculated using 
Equation 13 or Equation 14

 3 600 = conversion factor, sec/hr
 HR = duration of spill, hr/event
 R = universal gas constant at 101.3 kPa of pressure, (8.314 kPa * m3/
 (kg-mol * K)
 T = temperature of the liquid spilled, K
 
 Pi  may be calculated using Raoult’s Law (for ideal solutions) or Henry’s Law constants (when
gases are dissolved at low concentrations in water). Raoult’s Law is given in Equation 13.
 
Equation 13
 Pi = mi  *  VPi
 
 where:
 
 Pi = partial vapour pressure of VOC species i, kPa
 mi = liquid mole fraction of VOC species i, mole/mole
 VPi = true vapour pressure of VOC species i, kPa
 
 Pi may be calculated using Henry’s Law constants and Equation 14.
 
Equation 14
 Pi = mi  *  Hi
 
 where:
 
 Pi = partial vapour pressure of VOC species i, kPa
 mi = liquid mole fraction of VOC species i, mole/mole
 Hi = Henry’s Law constant for VOC species i, kPa
 
 The gas-phase mass transfer coefficient (Ki) may be calculated using Equation 15.
 
Equation 15
 Ki = [0.00438 * (0.62138 * U)0.78 * (Di/0.288)2/3]/3.2808
 
 where:
 
 Ki = gas-phase mass transfer coefficient for VOC species i, 

m/sec
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 U = wind speed, km/hr
 Di = diffusion coefficient for VOC species i, in air, cm2/sec
 
 Diffusion coefficients (Di) can be found in chemical handbooks and are usually expressed in units
of square centimetres per second (cm2/sec). If a diffusion coefficient is not available for a particular
NPI-listed substance, the gas-phase mass transfer coefficient (Ki) may be estimated using Equation
16.
 
Equation 16
 Ki = (0.00438 * (0.62138 * U)0.78 * (18/MWi)1/3)/3.2808
 
 where:
 
 Ki = gas-phase mass transfer coefficient for VOC species i,  

m/sec
 U = wind speed, km/hr
 MWi = molecular weight of VOC species i, kg/kg-mole
 
 
 Example 7 illustrates the use of Equation 12 through to Equation 16. Emissions are calculated by
following Steps 1 and 2.
 

 
 Example 7 - Calculating Emissions from Chemical Spills
 
 Formaldehyde is spilled onto the ground outside a building. The following data is given:
 
•  the spill is not detected for 1 hour; it takes an additional 2 hours to recover the remaining

formaldehyde; the duration of the spill (hr), therefore, is 3 hours;
•  the average wind speed (U) is  33.8 km/hr;
•  the ambient temperature (T) is 298 K (25°C);
•  the surface area of the spill (area) is 11 m2;
•  the molecular weight of formaldehyde (MWi) is 30 kg/kg-mole; and
•  the vapour pressure of formaldehyde (Pi) at 298 K (25°C) is 29.6 kPa.
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 Step 1: Using Equation 16, Calculate the Gas-Phase Mass Transfer   Coefficient
(Kformaldehyde)
 
 Kformaldehyde = (0.00438 * (0.62138 * U)0.78 * (18/MWi)1/3)/3.2808
 = (0.00438 * (0.62138 * 33.8)0.78 * (18/30)1/3)/3.2808
 = 0.0124 m/sec
 
 Step 2: Using Equation 12, Calculate Emissions (Eformaldehyde)
 
 Eformaldehyde = (MWi * Ki * area * Pi * 3 600 * HR) / (R * T)
 = (30 * 0.0124 * 11 * 29.6 * 3 600 * 3) / (8.314 * 298)
 = 528 kg/spill

4.4.3 Estimating Fugitive Emissions

Many of the engineering equations presented in this section are to be applied to estimate emissions
of organic compounds. Other than using emission factors or applying the mass balance technique
for estimating emissions, there is little information currently available for estimating fugitive
emissions of inorganic compounds. However, in electronics and computer manufacturing, it may be
necessary to estimate emissions of inorganic compounds for NPI-reporting purposes. This is
particularly the case for mineral acids in the gas/vapour phase.

Emission estimates of inorganic compounds can be obtained for electronics and computer
manufacturing processes by the following techniques:

•  develop correlations specific to particular chemical manufacturing processes;
•  use a portable monitoring instrument to obtain actual concentrations of the inorganic compounds

and then apply the screening values obtained (see paragraph below) into the applicable
correlation equation shown in Table 13 and Equation 17; or

•  Use the screening values obtained above and apply the emission factors, from Table 14,
corresponding to the screening range obtained.

Screening data is collected by using a portable monitoring instrument to sample air from potential
leak interfaces on individual pieces of equipment. A screening value (SV) is a measure of the
concentration of leaking compounds in the ambient air that provides an indication of the leak rate
from an equipment piece, and is measured in units of parts per million by volume (ppmv).

Also, surrogate measurements can be used to estimate emissions of inorganic compounds. For
example, potassium iodide (KI), or a similar salt solution, is an indicator for equipment leaks from
acid process lines. Equation 17 illustrates an approach for estimating fugitive inorganic chemical
emissions using data from Table 13.
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Equation 17
Ekpy,i = ERi * Ci/100* OpHrs * number of sources

where:

Ekpy,i = mass emissions of pollutant i calculated from 
either the screening values, correlation equation, 

or emission factors, kg/yr/source
ERi = emission rate, kg/hr/source
Ci = concentration of pollutant i in the equipment, %
OpHrs = operating hours, hr/yr/source

The application of Equation 17 is given at Example 8.

Table 13 - Correlation Equations, Default Zero Emission Rates, and Peggedc Emission
       Rates for Estimating Fugitive Emissions

Equipment
Default

Zero Emission
Pegged Emission Rates

(kg/hr per source) Correlation Equation
Type Rate

(kg/hr/source)
10 000 ppmv 100 000 ppmv (kg/hr per source) a

Gas valves 6.6 * 10-7 0.024 0.11 LR = 1.87 * 10-6 *
(SV)0.873

Light liquid valves 4.9 * 10-7 0.036 0.15 LR = 6.41 * 10-6 *
(SV)0.797

Light liquid pumpsb 7.5 * 10-6 0.14 0.62 LR = 1.90 * 10-5 *
(SV)0.824

Connectors 6.1 * 10-7 0.044 0.22 LR = 3.05 * 10-6 *
(SV)0.885

Source: Eastern Research Group, 1996.
LR = leak rate.
a SV is the screening value (ppmv) measured by the monitoring device. To estimate emissions, use the default zero

emission rates only when the screening value (adjusted for background) equals 0.0 ppmv; otherwise use the
correlation equations. If the monitoring device registers a pegged value, use the appropriate pegged emission rate.

b The emission estimates for light liquid pump seals can be applied to compressor seals,  pressure relief valves, agitator
seals, and heavy liquid pumps.

c When the monitoring device reads a pegged value; for example 10 ppmv for a gas valve, the pegged emission rate of
0.024 kg/hr per source would be used rather than determining the emission rate using a correlation equation, or a
default zero emission rate.
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Example 8 - Estimating Fugitive Emissions

A electronics manufacturing facility operates a light-liquid pump on an 80 percent ammonia
solution storage tank. The pump is run for 8760 hours during the year.

For a Screening Value of zero ppmv

OpHrs = 8760 hr/yr
SV (screening value) = 0 ppmv
Default-zero emission rate = 7.5 * 10-6 kg/hr/source

Using Equation 17:
NH3 emissions = ERi * Ci/100* OpHrs * number of sources

= 7.5 * 10-6 kg/hr/source *  
(80/100) * 8760 hr/yr

= 5.26 * 10-2 kg/yr

For a Screening Value of 20 ppmv

OpHrs = 8760 hr/yr
SV (screening value)= 20 ppmv

NH3 emissions (kg/hr) = 1.90 * 10-5 (SV)0.824

= 1.90 * 10-5 (20)0.824

= 2.24 * 10-4 kg/hr

NH3 emissions (kg/yr) = 2.24 * 10-4 kg/hr * 8760 hr/yr * 
(80/100)

= 1.57 kg/yr

Table 14 - Emission Factors for Equipment Leaks
Equipment Type Service Emission Factor

(kg/hr/source)
Valves Gas 0.00597

Light liquid 0.00403
Heavy liquid 0.00023

Pump seals a Light liquid 0.0199
Heavy liquid 0.00862

Compressor seals Gas 0.228
Pressure relief valves Gas 0104
Connectors All 0.00183
Open-ended lines All 0.0017
Sampling connections All 0.0150

Source: Eastern Research Group, 1996.
a The light liquid pump seal factor can be used to estimate the leak rate from agitator seals.

4.5 Other Emission Sources
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As shown in earlier sections, electronic and computer manufacturing activities produce other
emission sources for NPI-listed substances. These include:

•  residues from pollution control devices;
•  wash and rinse water from equipment cleaning;
•  product rejects;
•  used equipment; and
•  empty chemical containers.

Emissions from these sources may already have been accounted for, depending on the emission
estimation techniques used. These items (and others of a similar facility specific nature) should be
included in the development of a process flow diagram.

The contribution of the above sources of emissions, such as cleaning out vessels or discarding
containers, should be small when compared with process losses. If data is unavailable for these
sources (or any monitoring data on overall water emissions), facility operators should assume up to
1 percent of total vessel content may be lost during each cleaning occurrence. For example, if a
facility discards the empty drums that have not been cleaned, calculate the emission as 1 percent of
normal drum content. If the drum is transferred off-site to a landfill or to a drum recycler, then the
reportable substance is also transferred off-site and therefore does not require reporting. If however,
the drums are washed before disposal, this may contribute 1 percent of the content to the facility’s
wastewater loading.
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The following Emission Estimation Technique Manual referred to in this Manual is available at the
NPI Homepage (http://www.npi.gov.au) and from your local environmental protection agency (see the
front of the NPI Guide for details):

•  Emission Estimation Technique Manual for Fuel & Organic Liquid Storage.

http://www.environment.gov.au/epg/npi/home.html
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