

This project is co-funded by the European Union and the Republic of Turkey.

Technical Assistance for Assessment of Turkey's Potential on Transition to Circular Economy

EuropeAid/140562/IH/SER/TR

Construction and Demolition Waste – Challenges and Opportunities in Turkey

Prof. Dr. Mustafa ŞAHMARAN - Hacettepe University

Activity 1.2.1. Circular Economy Training 12th May 2022 - Antalya, Türkiye

Construction Industry in the World

Construction Industry in Turkey

- Value-added of Construction Activities: 6.2% of Turkey's GDP ^(1,*)
- Exportation market of the construction materials in the World : Turkey ranks 9th with 21,158 million dollars ⁽¹⁾
- Total sales of construction materials: 500 billion liras, 12% of Turkey's GDP⁽¹⁾
- Career opportunities created by the sector: Direct employment to 1.54 million people in Turkey ⁽¹⁾
- Resources consumed during the activities of the construction industry;
 - 50% of raw materials ⁽²⁾
 - 30% of water ^(expecting)
 - 35% of energy ^(expecting)
- Emissions and wastes as a result of construction sector

activities,

- 40% of greenhouse gas emissions (expecting)
- 40% of the total waste produced in Turkey (expecting)

 * Amount of value-added of construction activity in GDP
 ⁽¹⁾ İMSAD Building Sector Report, 2020
 ⁽²⁾ Final Draft for Preparation of Turkey SCP National Action Plan and Roadmap, April 2020 (expecting) Due to the lack of available data, it was calculated taking into account only available EU metrics.

Current Situation in Turkey - Housing Stock

Urbanization and Climate Change (ÇŞB)

Current Situation in Turkey - Population and Immigration

Rapidly growing population

Amount of immigrant

800 000

Refugees and immigrants

Population and annual growth rate, 2007-2020

*Turkey's current population and migration data, 2019. TUIK

Earthquake Hazard Map and Risk Assessment

Current Situation in Turkey – Cement/Iron-Steel/Aggregate Industry

Steel production (million tons)

Estimated CO2 emissions (million tons)*

Source: TürkÇimento, Turkish Steel Industrialists Association, Aggregate Manufacturers Association

Aggregate quarry

Current Situation in Turkey – Plastic Production

Source: PolynSPIRE (2019), "Map of Availability of Plastic Wastes Across Europe" report

Construction and Demolition Waste

As a result of,

- Ever-increasing urban population and urban transformation,
- Continuous development of industrialization,
- Continuous development economies of countries around the world.

The production of **Construction Demolition Waste (CDW)** has increased significantly.

billion tons

Construction and Demolition Waste

There are multiple adverse effects of CDW:

- usate landfilling of very large clean lands;
- □ causing hazardous pollution which jeopardize the surroundings;
- □ wasting of natural resources.

Effects of Housing & Construction on the Environment

Use of sources	Value Chain	Emissions
Land, metals, minerals, wood, water, glass, energy, plastic etc.	Building materials	Land use, air, water, soil, waste
Metals, minerals, wood, water, glass, energy, plastic etc.	Design and manufacturing	Air (greenhouse gases, pollutants), water, waste
Land, metals, minerals, wood, water, glass, energy, plastic etc.	Construction	Land use, air (greenhouse gases, pollutants), water, waste
Metals, minerals, wood, water, glass, energy, plastic etc.	Use	Air (greenhouse gases, pollutants), water, waste
Energy	Recycling	Construction & Demolition Waste and Plastic Waste

Circular Economy

Circular economy throughout all life cycles means that;

- efficient use of all resources and products,
- use of renewable resources,
- evaluation of waste,
- prevention of depreciation,
- products and resources remain active and functional in the system for as long as possible.

CDW Management Plan for Circular Economy

Life Cycle Assessment

Benefits of Recycling of CDWs to the Circular Economy

Challenges in implementation of circular principles in the management of CDW

Challenge	Specification	CDW	Potential solutions
1- Quality of Waste	Heterogeneity (complex materials), too high content of impurities. Hazardous substances Lack of traceability. Material degradation during use.	Multicomponent products – sandwich constructions.	Less complex products. Pre-demolition audits with follow-up checks on the removal of contaminants prior to demolition. Introduction of sensors in products for securing traceability. Development of tools for detecting product degradation/ageing.
2- Technological challenge	Processing needs for new rejects. Complex products may require multiple processing steps before recycling, increasing total cost.	Prefabricated elements, fine fractions in concrete waste (cement), plastic waste, insulation waste.	New technological development/new business models. Design for disassembly (DfD).
3- Economics	Low price of virgin materials. Increase of cost due to more work intensive, higher energy needs. Lack of new business models – sharing of apparatus, facilities, etc.	Concrete waste, wood waste	Governmental measures – landfill bans, taxes, green public procurement supporting recycling. Sharing of process equipment.
4- Traceability	Lack of standards and tools. Quality systems for complex materials.	Concrete waste, reusable components/structures	Standardisation and commitments between stakeholders
5- Responsibilities	Role of different actors not clear. Extended product responsibility not applicable for construction products with long lifespan.	Products containing parts from several manufacturers	Role of building owner in construction phase.
6- Technical requirements	Potential overspecification of virgin materials, standards not suitable for recyclables.	Metal/wooden/concrete structural elements.	Development of new standards.
7- Legal issues	Difficulties for CE-marking (scope of harmonised product standards not covering waste related materials) Systems for implementation of EoW concept lacking in many EU Member States.	Metal/wooden/concrete structural elements.	Standardisation.
8- Environmental aspects	Emissions from several processes can increase impacts. Lack of assessment tools for estimation of material or landfill savings during whole lifetime – focus mainly on greenhouse gas emissions. Environmental impacts often case specific – local conditions, availability of alternative materials, transport. Risks for hazardous substances.	All waste types.	Develop further life cycle analysis indicators for the saving of natural resources – not only focus on greenhouse gases. Promotion of local solutions where materials are not transported.

Best Practices in Turkey – Selective Demolition

Challenge	Specification	CDW	Potential solutions
1- Quality of Waste	Heterogeneity (complex materials), too high content of impurities. Hazardous substances Lack of traceability. Material degradation during use.	Multicomponent products – sandwich constructions.	Less complex products. Pre-demolition audits with follow-up checks on the removal of contaminants prior to demolition. Introduction of sensors in products for securing traceability. Development of tools for detecting product degradation/ageing.

With the Selective Demolition;

- ✓ Decreased transfer of CDWs to clean landfills and consequent protection of land use,
- Evaluation of waste as secondary raw materials, consequently reducing the need for primary raw materials,
- Improved environmental protection, both locally and globally, by reducing waste storage and the use of new materials.
 Reduction in total demolition costs through storage fee savings and revenues from the sale of secondary raw materials,

CAN BE PROVIDED.

Physical, Chemical and Mineralogical Characterization of Different-origin Construction and Demolition Wastes for Effective Recycling Performance

Emircan Ozcelikci^{1,2*}, Gurkan Yildirim^{2,3}, Hocine Siad⁴, Mohamed Lachemi⁴, Mustafa Sahmaran²

Abstract

This study focuses on the detailed characterization of construction and demolition wastes (CDWs) collected from different sites to monitor whether the same prepared under identical conditions, will give similar proper listribution chemical composition and crystalline nature investigated properties and the p to 7replaces same crush of the clave showed mark original materials. Differences were istered in the cle size distribution of CDWs, based on their brittleness, shape, and inequity Although, all CDWs satisfied the minimum strength activity index for supplementary cementitious materials, the level of fineness and SiO2+Al2O3 contents highly influenced their pozzolanic activity results. This highlights the importance of CDW characterization when using materials of different origins, especially for concrete waste.

Best Practices in Turkey – Technological Advances

Challenge	Specification	CDW	Potential solutions
2- Technological challenge	Processing needs for new rejects. Complex products may require multiple processing steps before recycling, increasing total cost.	Prefabricated elements, fine fractions in concrete waste (cement), plastic waste, insulation waste.	New technological development/new business models. Design for disassembly (DfD).
<image/>	Anology of mixed CDWImage: Strain Stra	ormation modelling (decision-making tool /e takip araçları (Trac tag identification (RF ability Platform (CTP) tral Imaging (HSI) rition mobile unit ed Breakdown Spectr carbonation systems and nano-scale micro	Image: constraint of the sector of the se

Best Practices in Turkey – Brick production and recycled asphalt applications with CDW

Challenge	Specific	ation	CDW	Potential solutions
3- Economics	Heterogeneity (complex materia impurities. Hazardous substance Material degradation during use	ls), too high content of s Lack of traceability.	Multicomponent products – sandwich constructions.	Less complex products. Pre-demolition audits with follow-up checks on the removal of contaminants prior to demolition. Introduction of sensors in products for securing traceability. Development of tools for detecting product degradation/ageing.
Crushing	& Grinding	Crushing & S	ieving	
R				
	Hollow Red clay Roof Concrete Glass brick Tile Waste Waste	30 brick for studies 05/22/2014	Aggregate + 20% tile waste 10 lay + 30% tile lay + 30% tile 20% brick clay + 30% coated tile waste th brick and tile w	Sub-base application with CDW iSTAÇ Bolluca Route

Best Practices in Turkey – Demountable System Design

Challenge	Specification	CDW	Potential solutions
3- Economics	Processing needs for new rejects. Complex products may require multiple processing steps before recycling, increasing total cost.	Prefabricated elements, fine fractions in concrete waste (cement), plastic waste, insulation waste.	New technological development/new business models. Design for disassembly (DfD).
 ✓ Developr binder w ✓ Ability to in differe 	nent of a new generation ith CDW-based materials be disassembled and rebuilt nt locations in a practical way	Real A	
✓ High leve	l of strength and durability		
✓ High mote everywhe	pility allowing it to be built ere		

Best Practices in Turkey – Traceability

Challenge	Specification	CDW	Potential solutions
4- Traceability	Lack of standards and tools. Quality systems for complex materials.	Concrete waste, reusable components/structures	Standardisation and commitments between stakeholders
	<image/>		<complex-block></complex-block>
FARO	Scanning with mobile devices (e.g.	Google Tango)	Existing floor plans, digitization of drawings

Best Practices in Turkey – Extended Product Responsibility

Challenge	Specification	CDW	Potential solutions
5- Responsibilities	Role of different actors not clear. Extended product responsibility not applicable for construction products with long lifespan.	Products containing parts from several manufacturers	Role of building owner in construction phase.

Best Practices in Turkey – 3D Additive Manufacturing

Challenge	Specification	CDW		Potential solutions	
6- Technical requirements	Potential overspecification of virgin materials, standards not suitable for recyclables.	Metal/wooden/concrete structural elements.	Development of new standards.		

With the implementation of 3D into the construction industry

- Developing a design repertoire for post-disaster shelters
- Development of process design to automate the design-tomanufacturing workflow
- Design a tool for developing technical solutions in Additive Manufacturing (AM) where industrial robot arms can be used with binder material
- Development of eco-friendly, new generation printable building materials prepared from 100% CDW
- Production of affordable housing structures in a short time without the need for molds with additive production techniques

Best Practices in Turkey – Material Passport

Challenge	Specification	CDW	Potential solutions
7- Legal issues	Difficulties for CE-marking (scope of harmonised product standards not covering waste related materials) Systems for implementation of EoW concept lacking in many EU Member States.	Metal/wooden/concrete structural elements.	Standardisation.

ICEBERG Projesi - TUDelft

RFID tag in aggregate

Evaluation of readability in aggregate

Evaluation of readability in concrete cube

Best Practices in Turkey – CDW-based Green Concrete Production

RADIATION

DEPLETION

			CML-1A	Method	Impact-200	2+ Method
LCIA Category	Units	Concerns	100%	Portland	100% CDW	Portland
			CDW	Cement	Based	Cement
			Based	Concrete	Concrete	Concrete
			Concrete			
Global warming potential (GWP100)	kg CO2 eq.	Greenhouse gas emissions to the atmosphere	-0.395	311	-4.08165	307.5908
Stratospheric ozone depletion (ODP10)	kg CFC-11 eq.	UV-B radiation that poses risks for human and animal health, ecosystems, cycles and materials	0.000118	1.2E-5	0.000118	1.24E-05
Acidification potential (AP generic)	kg SO2 eq.	Harmful impacts of acidification on soil, surface water, groundwater, ecosystem organisms and materials	-0.381	0.695	-0.40724	0.76613
Photochemical oxidation	kg C₂H₄ eq.	Formation of photo- oxidants that poses risks for human health and ecosystem.	-0.00889	0.0297	-	-
Terrestrial	1,4-dichlorobenzene	Harmful impacts on	0.268	1.88	7774.337	3544.881
Ecotoxicity	equivalents	terrestrial ecosystem				
Potential (TETP)					(kg TEG soil)	(kg TEG soil)
Land Occupation	m² org.arable	Organic arable land damage	-	-	1.317384	2.91297
Mineral Extraction	MJ surplus	The problem of exhaustion of finite resources with mineral resource extraction	-	-	-8.80534	4.770854

Best Practices in Turkey – CO₂ Capture of Recycled Aggregates

Challenge	Specification	CDW	Potential solutions
8- Environmental aspects	Emissions from several processes can increase impacts. Lack of assessment tools for estimation of material or landfill savings during whole lifetime – focus mainly on greenhouse gas emissions. Environmental impacts often case specific – local conditions, availability of alternative materials, transport. Risks for hazardous substances.	All waste types.	Develop further life cycle analysis indicators for the saving of natural resources – not only focus on greenhouse gases. Promotion of local solutions where materials are not transported.

REDUCING CO2 EMISSIONS WITH NEW GREEN CONCRETE

Climate change is primarily caused by too much carbon dioxide (CCQ) in the atmosphere. Human achity such as burning coal and culting down forests is causing atmospheric CO2 to increase at an unprecodurate rule, with potentially dowasting global consequences. Construction and domolitor usask (CDM) is of 200 of total urban wates and coust of coal of total urban wates and coal associations and the landtilling of COW's also attravely coally and harmful to the environment.

A new low-cost "green concrete" made entriely from way-cled CDW that not only reduces CO2 emissions, but promises safe permanent storage of CO2 through binding high tests of CO2 o taskit during production. The use of recycled CDW also decreases the quarrying of new raw materials, taking away the need to strip the earth of its natural resources.

The UK-Trainey Orean LogOue project has oracted a facibit, pois-fac construction system that can be quickly huil to provide alfordate accommodation for low-iscome communities, including the humaness, stant-obters and traingess net only in Newton Fund partner countries but countries all and used in the word. The system can also be dessembled and rocyclatibity with easy-to implement, lowcess and energy-efficient techniques and errowing the need for heavy demolitory processes and the poultion the increases.

28 Newton Prize 2020

in Turkey and provided opportunities to imitiate complete now lines of research to project's impact and comflicted to global social development.

Project leads: Prolesson Advance, University of Bractford, UK and Protesson Mustata Sathmaran, Hacottope University, Turkey Dailwayn partners: Bishis Courcul, Utera fibes Catefilic and Technological Research Council, Turkey

The construction industry is a huge contributor to climate change. Our circular economy approach aims to drastically reduce waste, bring down CO2 emissions and reduce environmental damage, while ensuring construction demands can be met.

Professor Mustafa Sahmaran, Hacettepe University, Turkey

- ✓ 40% reduction in water absorption capacity of recycling aggregates
- ✓ Carbondioksite capture at ~350 kg CO2/ Ton-paste levels as a result of carbonation.
- ✓ ~35% increase in compressive strength of mortar mixes using recycled aggregate

Lafarge (Fastcarb Project)

26

Thank You !

Advanced Construction Materials Research Laboratory Hacettepe University

Civil Engineering Department

Contact: sahmaran@hacettepe.edu.tr

Prof. Dr. Mustafa ŞAHMARAN

This publication was produced with the financial support of the European Union. Its contents are the sole responsibility of the consortium led by DAI Global Austria GmbH & Co KG, and do not necessarily reflect the views of the European Union.