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Özet

Heyelan duyarlılık haritaları can ve mal kaybının en aza indirilmesi amacıyla mekansal karar

vermede kullanışlıdır. Bu konuda, çeşitli yöntemler kullanılarak yapılmış birçok çalışma

mevcuttur. Çoğunlukla, bu çalışmalar için gerekli olan mekansal veriler yerel kuruluşlar

tarafından üretilmiştir ve küçük ölçekli çalışmalar için uygundur. Ancak lokal veriye

erişimin olmadığı yada büyük ölçekli çalışmaların yapılacağı durumlarda kullanılmak amacıyla

kıtasal/global veri setleri ile aktarılabilir ve ölçeklendirilebilir yaklaşımlar geliştirilmelidir.

Bunun için, yerel kuruluşlar tarafından üretilmiş küçük ölçekli ve yüksek çözünürlüklü veri ile

herkese açık ancak düşük çözünürlüklü verinin performanslarının karşılaştırılması önemlidir.

Bu çalışmanın amacı bu karşılaştırma aracılığı ile herkese açık global verinin heyelan duyarlılık

çalışmalarında kullanılabilirliğini incelemektir.

Bunun için Göta nehri vadisi (İsveç) ve Ruanda çalışma alanı olarak seçildi. Göta nehri

vadisi kullanılarak lokal ve açık veri performanslarının karşılaştırılması yapıldı. Ruanda ise

çalışmanın verimliliğinden ve başka bölgelere aktarılabilirliğinden emin olmak için analiz

edildi. Çalışma için seçilen faktörler sırasıyla; yükseklik, eğim, toprak tipi, arazi örtüsü, yağış,

litoloji, yola mesafe ve drenaj ağlarına mesafedir. Heyelan duyarlılık haritaları, Frekans Oranı

yöntemi kullanılarak oluşturuldu. ROC eğrisi kullanılarak yapılan doğrulamada Göta nehri

vadisi lokal ve açık veri analizleri ile Ruanda için sırasıyla 92.9%, 90.2% ve 83.1% doğruluk

oranları elde edildi. Sonuçlar incelendiğinde yüksek çözünürlüklü lokal veriye erişimin

olmadığı bölgelerde herkese açık global veri kullanımının yüksek bir potansiyel gösterdiği

anlaşıldı.
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Abstract

Landslide susceptibility maps are useful for spatial decision-making to minimize the loss

of lives and properties. There are many studies related to the development of landslide

susceptibility maps using various methods such as Analytic Hierarchy Process, Weight of

Evidence and Logistic Regression. Commonly, the geospatial data required for such analysis

(such as land cover and soil type maps) are only locally available and pertinent to small

case studies. Transferable and scalable approaches utilizing publicly available, large scale

datasets (ie., global or continental) are necessary to develop susceptibility maps in areas

where local data is not available or when large-scale analysis is required. To develop such

approaches, a systematic comparison between locally available, fine resolution, and larger

scale, openly available but coarser resolution datasets is essential. The objective of this study is

to investigate the efficiency of globally available public data for landslide susceptibilitymapping

by comparing it with the performance of the data provided from local institutions.

For this purpose, the Göta river valley in Sweden and the country of Rwanda were selected

as study areas. Göta river valley was used for the comparison of local and open data.

While Rwanda was used as a study area to ensure the efficiency of open data analysis and

transferability of the framework. The selected landslide impact factors for this study are;

elevation, slope, soil type, land cover, precipitation, lithology, distance to roads, and distance

to drainage network. Landslide susceptibility maps were prepared by using the state-of-the-art

Frequency Ratiomethod. The validation results using the prediction rate curve technique show

92.9%, 90.2%, and 83.1% area under curve values for local and open data analyses of Göta river

valley and open data analysis of Rwanda country, respectively. The results show that globally

available open data demonstrate strong potential for landslide susceptibility mapping when

high-resolution local data are not available.
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Chapter 1

Introduction

The term “landslide” is defined as the movement of rock, debris or earth, down in a sloped

land [1]. Landslides occur when a down slope shear stress exceeds the shear strength of the

slope [2]. They are considered as one of the most common natural disasters globally causing

the death of hundreds of people and billions of dollars of property damages each year (Fig. 1.1)

[3].

Figure 1.1: Landslides cause serious damages on lives and properties of people

(Source: https://en.wikipedia.org/wiki/Landslide)
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CHAPTER 1. INTRODUCTION

The Global Landslide Catalog, prepared by NASA, shows the location of approximately 6000

landslides that occurred since 2007. According to the catalog, landslides caused more than

20,000 deaths between 2007-2015. The catalog shows that deadly landslides have mostly

occurred in the parts of Asia and Southeast Asia [4]. In the 3rd of July 2021, a landslide hit a

popular resort following a heavy rainfall in Atami city of Japan. It killed 2 people and left 20

people missing [5]. In India (state of Maharashtra), 23rd of July 2021, heavy rains triggered

landslides and flooding. It caused the death of approximately 110 people [6]. More recently, in

3rd of January 2022, Chinawitnessed a new landslide at a construction site in the southwestern

region (Guizhou province). It left 14 people dead and 3 injured [7].

Natural disasters are more destructive in poorer countries than prosperous countries [8]. The

death toll tends to be higher in a developing country than a developed country as a result of

a natural disaster. In developing countries, people with lower income level have to live in

unplanned settlements. In those areas, there is no municipal infrastructure. Therefore, they

are more prone to natural hazards [9]. Additionally, in the long term, the process of repairing

damages to roads and buildings take more time for developing countries [10]. Since buildings

are poorly built, it ismore difficult to survive for the people living in developing countries during

a natural disaster. Other disadvantages is poor transport and communication systems as it is

difficult for services to access remote and underdeveloped areas [11] .

In order to have a sustainable land use planning and reduce the loss of lives and properties,

landslide susceptibility maps are needed [12]. Landslide susceptibility maps delineate the

probability and spatial distribution of future landslides in a specific area based on specific

influencing factors [13]. These factors frequently include steepness of the slope, deforestation,

bedrock, type of soil, the amount of moist within the soil, distance to excavated areas [14].

The shear stress that causes landslide is dependent on these factors. One important factor is

the degree of saturation of the soil. Precipitation and closeness to water sources make the soil

saturated by increasing pore water pressure and decreases the shear strength. Therefore, the

slope gets more susceptible for landslide occurrences. Land cover is another important factor

since different types of areas have different level of susceptibilities and they need to be detected.

For instance, deforested areas are more susceptible to landslides since the roots of trees are

not strong enough to hold the soil when they are cut down [15]. The texture of the soil is also

important to consider. Certain characteristics of soil such as the particle size, shape and pore

distribution effect probability of landslide occurrence. Silted and/or clayey soils are known

as more susceptible to landslides. For deeper landslides, lithological variety of the area needs

to be considered since different rock units have different degrees of susceptibility. Moreover,
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CHAPTER 1. INTRODUCTION

excavation works decrease the load on topography and reduces the leakage of water. The areas

closer to excavations are considered more susceptible. As the causal factors vary, landslides

may occur in different ways (Fig. 1.2):

Figure 1.2: Major types of landslides

(Source: U.S. Geological Survey, Link: https://pubs.usgs.gov/fs/2004/3072/pdf/fs2004-

3072.pdf )
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CHAPTER 1. INTRODUCTION

Remote sensing data and techniques make it easier to develop landslide inventories and

they are useful for understanding the spatial distribution and size of previously occurred

landslides. It is also possible to assess the environmental characteristics that effect landslide

susceptibility. Additionally, satellite-derived data sets can provide real-time information

related to the landslide triggering events such as rainfall and earthquake [16].

As common geospatial tools have the capabilities to handle geospatial data (such as

visualization, manipulation and analysis), landslide susceptibility mapping can be successfully

performed. A frequent application of landslide mapping is through Geographic Information

Systems (GIS), where it is possible to integrate the spatial data of different landslide influencing

factors to detect landslide prone zones within a specified area [17].

Landslide susceptibility mapping is applied by researchers by using a wide range of heuristic,

deterministic and statistical techniques such asAnalyticHierarchyProcess, LogisticRegression

and Machine Learning. One of the biggest challenges in the field is data availability. It may

be difficult to find necessary data to prepare a landslide susceptibility map of a specific area.

It was observed that, in most studies, the data required for landslide susceptibility mapping

are collected from local institutions of a specific municipality or national organization, which

makes applications over large areas, data scarce countries or in different geographical contexts

a difficult task.

Accordingly, the aim of this study is to make a comparison of using open data and local data

for landslide susceptibility analysis. A comparison will be made in the Göta river valley which

is located in the Västra Götaland region of Sweden. Following, to ensure the robustness of

the analysis, the whole Rwanda country will be analyzed afterwards using openly available

data. The usage of open data for landslide susceptibility mapping will make spatiotemporal

analysis easier to implement, particularly in areas with limited data availability. Additionally,

information on the importance level of each criteria may increase accuracy levels of future

studies.
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Chapter 2

Literature Review

Landslide susceptibility mapping studies have been conducted for over 30 years by analyzing

different areas and techniques. In this section, I perform a literature review on some of the

most impactful studies in the field.

2.1 Methods for Landslide Susceptibility Analysis

By now, plenty of methods were used by researchers for landslide susceptibility analysis. Lee

[18] investigated the number of studies that used each method for landslide susceptibility

mapping in the period 1999-2018. According to the study, the methods that were used by

researchers have heuristic or statistic approach, respectively. In this section, these approaches

were presented.

2.1.1 Heuristic Approach

Heuristic approach uses opinions of experts who have deep knowledge related to

geomorphology. Environmental factors are used as input and weighted according to the

opinions of experts. This approach consists of two different analyses; direct mapping analysis

and qualitative map combination. In direct mapping analysis, the susceptibility of the field

is directly determined by the experts. In qualitative map combination, each class parameter

within each causative factor is weighted by the experts. Since weights are determined directly

by the experts, this approach is considered mainly subjective [19]. This approach is suitable

for small scale regional analyses and mostly used by regional planning agencies [20]. Analytic

Hierarchy Process is an example of heuristic approach.
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CHAPTER 2. LITERATURE REVIEW

2.1.2 Statistical Approach

Statistical approach provides results with higher objectivity compared to heuristic since the

combinations of casual factors are statistically determined and landslide occurrences are

quantitatively estimated. This approach requires landslide inventory data of the research

area, consisting locations of previous landslides [19]. The factors are combined with the

inventory data to predict the locations of future landslides [21]. This approach includes two

different analyses; bivariate statistical analysis (e.g. Information Value, Weight of Evidence)

and multivariate statistical analysis (e.g. Artificial Neural Network, Logistic Regression) [19].

In multivariate analysis, all conditioning factors are treated together. Bivariate analysis, in

contrast, investigates the relationship of each factor with the landslide inventory separately

[21].

2.1.3 Case Studies Using Different Methods

According toLee’s study [18], LogisticRegressionwas themost preferredmethod for the period

of 1999-2008 and 2014-2018 while it was Frequency Ratio for the period of 2009-2013. Other

methods such as Artificial Neural Network, Weight of Evidence, Analytic Hierarchy Process,

Fuzzy Logic and Support Vector Machine were also popular among researchers regarding

landslide susceptibility analysis. When the literature was checked for the period of 2019-

2022, it was observed that the studies were mostly based on comparison of performances of

different Machine Learning Techniques (e.g. Artificial Neural Network; Convolutional Neural

Network, Random Forest, Decision Tree). In this subsection, some of the prominent studies

were reviewed regarding the methods that were used and accuracy levels of the results.

Pourghasemi et al. [22] analyzed landslide susceptibility of Haraz watershed in Iran by using

Weights of Evidence and Certainty Factor methods. For this purpose, a landslide inventory

database that is used to assess the landslide susceptibility of the study area, with a total of 78

landslides, was mapped in the study area. The landslide data was randomly spilt into training

and testing dataset. Of the 78 landslides identified, randomly 55 (70%) locations were chosen

for the landslide susceptibility maps, while the remaining 23 (30%) cases were used for the

model validation. The verification results showed that the weights-of-evidencemodel (79.87%)

performed better than certainty factor (72.02%) model. It was indicated that in both of the

models, the data acquisition and analysis were relatively easy and not very time consuming.

Pradhan [23] compared Frequency Ratio, Fuzzy Logic and Logistic Regression methods for

analysis of Cameron catchment area in Malaysia. Validation was performed by comparing the
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CHAPTER 2. LITERATURE REVIEW

known landslide location data with the landslide susceptibility maps. The rate curves were

created and its areas of the under curve were calculated for all cases. In the case of frequency

ratiomodel used, the area ratio was 0.8925 (i.e. the prediction accuracy is 89.25%). In the case

of multivariate logistic regression model used, the area ratio was 0.8573 (i.e. the prediction

accuracy is 85.73%). In the case of applying fuzzy algebraic “sum”, the area ratio was 0.7531

(i.e. the prediction accuracy is 75.31%). Consequently, the case of frequency ratio model

used showed a slightly higher accuracy than the fuzzy logic operators and multivariate logistic

regression models.

Feizizadeh and Blaschke [24] analyzed landslide susceptibility of Urmia lake basin in Iran.

The landslide susceptibility maps were produced based on weighted overlay techniques

including Analytic Hierarchy Process (AHP), Weighted Linear Combination (WLC) and

OrderedWeighted Average (OWA). Result of research indicated the AHP performed best in the

landslide susceptibility mapping closely followed by the OWA method while the WLC method

delivered significantly poorer results. However, accuracy levels of the result maps were not

explained.

Devkota et al. [25] assessed landslide susceptibility of Mugling–Narayanghat road and its

surrounding area using bivariate (certainty factor and index of entropy) and multivariate

(logistic regression) models. 321 landslides were mapped and out of which 241 (75 %) were

randomly selected for building landslide susceptibility models, while the remaining 80 (25 %)

were used for validating the models. The validation of landslide susceptibility map was carried

out using receiver operating characteristic (ROC) curves. The ROC plot estimation results

showed that the susceptibility map using index of entropy model with AUC value of 0.9016

has highest prediction accuracy of 90.16 %. The susceptibility maps produced using logistic

regressionmodel and certainty factor model showed 86.29 and 83.57 % of prediction accuracy,

respectively. It is concluded that all the models employed in the study showed reasonably good

accuracy in predicting the landslide susceptibility of Mugling–Narayanghat road section.

Kavzoglu et al. [26] employed the Fuzzy Analytic Hierarchy Process and Support Vector

Regression methods to assess the shallow landslide susceptibility of Trabzon province (NE

Turkey). Performances of the methods were compared with that of widely used logistic

regression model using ROC and success rate curves. Results showed that the Fuzzy-AHP

and SVR outperformed the conventional logistic regression method in the mapping of shallow

landslides. AUC values of the Fuzzy-AHP, SVR, and LR models were calculated as 0.9384,

0.9321, and 0.9108, respectively.
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Yilmaz [27] applied and compared conditional probability (CP), logistic regression (LR),

artificial neural networks (ANNs) and support vector machine (SVM) methods in Koyulhisar

(Sivas, Turkey). AUC results for eachmethodwere 0.827, 0.831, 0.846 and 0.841, respectively.

The results of the study showed that the maps obtained from SVM and ANNmodels looks like

having a better accuracy than the conventional statistical methods; however, it was indicated

that susceptibility maps can be easily produced using CP since input process, calculation

and output processes are very simple in CP model when compared with the other methods

considered in the study.

2.2 Commonly Used Factors

Different factors were used by different researchers in order to investigate landslide

susceptibilities. There is not a standard rule regarding the selection of the factors. However,

some factors were preferred by more researchers such as slope and land cover. On the table

below, some of the outstanding studies in the field and the factors that were used within those

studies were listed.

Further mentions: Slope [1], Precipitation [2], NDVI [3], Elevation [4], Soil Permeability [5],

Land Cover [6], Distance to Roads [7], Distance to Drainage Network [8], Distance to Water

Bodies [9], Curvature [10], Soil Type [11], Stream Power Index [12], Aspect [13], Lithology

[14], Distance from Faults [15], Flow Direction [16], Soil Depth [17], Topographic Wetness

Index [18]

Additionally, the studies were reviewed regarding data sources. Elevation map was mostly

produced by extracting contour lines from topographic map of the study area. Slope, Aspect,

Flow Direction, Curvature, Stream Power Index and Topographic Wetness Index maps were

produced by using the Digital Elevation Model. Precipitation map was provided from the

local meteorological agency. For satellite images, U.S. Geological Survey was preferred as data

source. Land Cover andNDVImapswere prepared by using satellite images. Soil Permeability,

Soil Type and Lithology maps were provided from the geology agency of the study area. Road,

Drainage andWater Bodies data were provided from local public institutions or extracted from

the topographic map of the study area. It can be seen that both local data and open data were

used for landslide susceptibility studies. However, performances of local data and open data

were not examined.
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Table 2.2.1: The studies reviewed regarding factor selection and data sources

Research Study Factors Used
Landslide susceptibility mapping using multi-
criteria evaluation techniques in Chittagong Metropolitan
Area, Bangladesh [28]

[1], [2], [3], [4], [5], [6], [7],
[8], [9]

Application of a neuro-fuzzy model to landslide
susceptibility mapping for shallow landslides in a tropical
hilly area [29]

[1], [4], [7], [8], [10], [11], [12]

Application of an evidential belief function model in
landslide susceptibility mapping [30]

[1], [2], [3], [4], [6], [7], [8],
[10], [11], [12], [13], [14], [15]

Manifestation of
an adaptive neuro-fuzzy model on landslide susceptibility
mapping: Klang valley, Malaysia [31]

[1], [3], [4], [8], [10], [11],
[15]

Application of likelihood ratio and logistic regression
models to landslide susceptibility mapping using GIS [32]

[1], [3], [6], [8], [10], [11]
[14],

GIS-based weights-of-
evidence modelling of rainfall-induced landslides in small
catchments for landslide susceptibility mapping [33]

[1], [6], [7], [11], [13], [16],
[17]

Modification of landslide susceptibility mapping using
optimized PSO-ANN technique [34]

[1], [4], [6], [7], [8], [10], [11],
[12], [13], [14], [15]

Landslide susceptibility mapping at Hoa Binh province
(Vietnam) using an adaptive neuro-fuzzy inference system
and GIS [35]

[1], [2], [6], [7], [8], [10], [11],
[13], [14], [15]

Landslide susceptibility mapping using ensemble bivariate
and multivariate statistical models in Fayfa area, Saudi
Arabia [36]

[1], [4], [7], [10], [11], [12],
[13], [14], [15], [18]

Regional landslide susceptibility analysis using back-
propagation neural network model at Cameron Highland,
Malaysia [37]

[1], [2], [3], [6], [8], [10], [11],
[13], [14], [15]
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Chapter 3

Study Areas and Data

3.1 Study Areas

The first study area is the Göta river valley. It is located in the Västra Götaland region in

Sweden. It is the largest river within the country with 90 km length between Vänern lake and

Gothenburg city [38]. The study area covers 2724 km2 and the highest elevation value within

the area is 226 meters, according to the Digital Elevation Model provided by Lantmäteriet.

According to the database prepared by the Swedish Geotechnical Institute, there are more

than 200 previous landslides registered (https://gis.swedgeo.se/skred/). Considering the

map, it can be said that the valley is one of the areas which has the highest susceptibility to

landslides, within Sweden. One of the existing soil types within the area (and Sweden, in

general) is quick clay and this soil type canmake a landslidemorewidely spread and destructive

[38]. Therefore, it was selected as a study area by also considering easy access to local data.

The second study area is the whole Rwanda country. It covers 26.338 km2 area. The country

is situated in East-Central Africa. The neighboring countries of Rwanda are; Uganda in the

north, Tanzania in the east, Burundi in the south and Democratic Republic of Congo in the

west [39]. There are high and steep mountains existing in northwest and central parts of the

country [40]. The highest point is Volcan Karisimbi, with 4519 meters altitude. The lowest

point is the Rusizi River, with 950 meters altitude [41]. According to the Digital Elevation

model provided by theUnited States Geological Survey, the lowest elevation value is 921meters

while highest value is 4500 meters. The global landslide inventory map, provided by NASA,

shows that landslides are quite common in the area. Considering its relatively smaller size and

poor local data availability, it was selected as the second study area.

10
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CHAPTER 3. STUDY AREAS AND DATA

3.2 Data

3.2.1 Landslide Inventory Maps

To train the models and validate the results of analyses, locations of previous landslides were

needed. Landslide data for Göta River valley was provided from SGU (Geological Survey of

Sweden). To get landslide data for Rwanda, the global landslide database of NASA was used.

NASA Global Landslide Viewer portal provides information related to landslides previously

occurred around theworld. Figure 3.2.1 shows locations of previous landslides, which occurred

around the Göta river. Landslides are represented as lines and they were converted to

points afterwards, for validation of susceptibility maps. Figure 3.2.2 shows previous landslide

locations that occurred in Rwanda. Since there is no landslide recorded for Göta river valley in

NASALandslide Viewer portal, the one provided fromSGUwas used for analysis and validation

of both local data analysis and open data analysis of Göta river valley. Both local inventory and

open inventory were checked for the occurrence dates of the landslides. It was seen that SGU

did not include this information within the data and on the website (https://sgu.se/). On the

contrary, the occurrence date of each landslide was indicated within NASA Global Landslide

Catalog. According to the catalog, occurrence dates of the landslides within Rwanda ranges

between 2010-2018.

Figure 3.2.1: Landslide Inventory Map of Göta River Valley
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Figure 3.2.2: Landslide Inventory Map of Rwanda

3.2.2 Spatial Resolution Issue

The term “spatial resolution” is used to state the number of pixels that construct a digital image

[42]. It is important since it affects the level of sharpness in an image [43]. Further, it needs

to be considered when doing landslide susceptibility analysis of an area since it may affect the

accuracy of the result map. Since ArcGIS will be used for this study, the website of the software

is reviewed for this issue. In the article named “Cell size and resampling in analysis”, it is

indicated that the ideal situation is that all data have the same spatial resolution. However, if

they have different spatial resolution values, then they will be automatically resampled to the

coarsest resolution [44].

Chen et al. [45] investigated the effect of spatial resolution on the accuracy of landslide

susceptibility analysis. 7 different resolution values were tested (30, 40, 50, 60, 70, 80 and

90m) in the Baxie River basin in China. They used frequency ratio, index of entropy, and

weight of evidence methods for the analyses. They found out that the highest accuracy could

be obtained by using 70 meter resolution input data. This result shows that higher spatial

resolution does not necessarily provide more accurate results.

Lee et al. [46] analyzed the Boun region of Korea. 15 factors were used with 4 different

12
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resolution values (5, 10, 30, 100 and 200m). They found that analyses with 5, 10 and 30 meter

resolution values provide similar results. However, 100 and 200 meter resolutions provided

lower accuracy. It is indicated that this difference arises from the scale values. The scale of

the input data was 1:5000 - 1:50000. For this scale range, at least, less than 30m resolution is

needed, according to the study.

Meena andNachappa [47] searched for the effects of different spatial resolution values in Kullu

Valley, Himalayas. 12.5 meter, 30meter and 90meter digital elevation models are used within

the study. Frequency Ratio method is applied for landslide susceptibility mapping. According

to the results, 30 meter DEM showed higher accuracy (0.910) compared to 12.5 meter model

(0.839) and 90 meter model (0.824).

Pradhan and Sameen [48] used 15 factors and 9 different spatial resolution values (0.5, 1,

2, 3, 5, 10, 20, 30 (LIDAR-based) and 30 meter (ASTER-based)). By applying the Logistic

Regression method, the 3 meter elevation model provided the most accurate result. It is

indicated that, may be a better choice for land use planning and slope management since

susceptibility zones can be accurately extracted at the parcel level.

According to the existing literature, it is observed that there is still not a certain case and a

clear explanation related to the spatial resolution/scale issue. Its effect may depend on other

conditions such as the size of the area and the scale of the inputmaps. For this reason, the effect

of spatial resolution on the accuracy level of landslide susceptibility mapping was ignored in

this study. All of the analyses were completed in 50m x 50m resolution.

3.2.3 Factors

8 factors were used in this study for 3 different analyses; Göta river valley local data analysis,

Göta river open data analysis and Rwanda open data analysis. On the tables below, the

information related to the factor maps were listed. They were separated as Göta river valley

data and Rwanda data. However, for Göta river open data analysis, same data sources were

used with Rwanda.

Table 3.2.1: Data information were listed for each factor for the Göta river valley

Parameter Data Type Data Source Spatial Resolution
Elevation Raster Lantmäteriet 50m
Soil Type Vector (Polygon) SGU -
Slope Raster Lantmäteriet 50m
Distance to Roads Vector (Line) Trafikverket -
Lithology Vector (Polygon) SGU -
Distance to Drainage Vector (Line) Lantmäteriet -
Land Cover Raster Lantmäteriet 10m
Precipitation Vector (Point) SMHI -
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Table 3.2.2: Data information were listed for each factor for Rwanda

Parameter Data Type Data Source Spatial Resolution
Elevation Raster USGS 30m
Soil Type Vector (Polygon) FAO -
Slope Raster USGS 30m
Distance to Roads Vector (Line) OpenStreetMap -
Lithology Vector (Polygon) Hamburg University -
Distance to Drainage Vector (Line) OpenStreetMap -
Land Cover Raster ESRI 10m
Precipitation Raster University of East Anglia 200m

Soil Type

Slope stability is influenced by certain characteristics of soil such as particle size, shape and

pore distribution. Compared to the coarser textured soils, finer-textured soils (which include

smaller particles such as silt and clay) can hold larger volumes ofwater andhave a larger surface

area. Increasing pore pressure makes the soil weaker [49]. Soil maps were provided in vector

format from SGU (Geological Survey of Sweden) for the local data analysis and from FAO

(Food and Agricultural Organization of the United Nations) for the open data analyses (Fig.

3.2.3, 3.2.4). They were rasterized afterwards. The local data provided from SGU (Geological

Survey of Sweden) has different soil classes compared to the one provided from FAO (Food

and Agriculture Organization). The classes of the SGU map include Berg (mountain), Torv

(peat), Lera–silt (silted and/or clayey soil), Vatten (water), Morän (moraine), Isälvssediment

(ice river sediment) and Sand-Grus (sand-gravel). The FAO map classified the soils according

to the particles they include and named them in a different way (e.g. Podzol, Cambisol,

Nitosol, Andosol). According to the SGU map and the landslide inventory of Göta river valley,

Berg(mountain) areas have experienced 40 landslides and the areas with Postglacial soil have

5. Most of the landslides (235) have occurred in the areas with Lera–silt (silted and/or clayey)

soil type while Isälvsediment (ice river sediment) and Morän (moraine) classes have only 2

landslides. There is no landslide occurred in the rest of the classes. According to the FAO soil

map, 192 of the 284 landslides have occurred in the areas with Podzol soil in the Göta river

valley and the rest is within Cambisol soil. In Rwanda, almost 2/3 of the landslides (23) have
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occurred within Nitosol soil. Ferralsol and Andosol soils have 6 landslides while Lithosol has

3 and Cambisol has only 1.

(a) Soil map of Göta river valley
provided from SGU

(b) Soil map of Göta river valley
extracted from Global Soil Map of FAO

Figure 3.2.3: Soil maps of Göta River Valley provided from different sources

Figure 3.2.4: Soil Map of Rwanda provided from FAO
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Elevation

Elevation is one of the indirect contributors to the landslide occurrence with relation to the

other parameters such as tectonics and precipitation [50]. At very high elevations, mountain

peaks worn by different rock types and higher shear force is making it less susceptible to

landslide occurrences. Materials coming from higher elevations make intermediate elevations

more prone. Lower elevations are also less susceptible to landslides due to less slope angle

values and thick vegetation cover [51–53]. The Digital Elevation Models were provided from

Lantmäteriet (The Swedish Mapping, Cadastral and Land Registration Authority) for the local

data analysis and fromUSGS (United States Geological Survey) for the open data analyses (Fig.

3.2.5, 3.2.6). The DEM provided from Lantmäteriet has 50 meter spatial resolution while the

models provided from USGS have 30 meter resolution. In addition to the 50 meter resolution

DEM, another Lantmäteriet DEM with 2 meter pixel size was also available. However, 50

meter DEM was used for the analysis to speed up the analysis process. Lantmäteriet DEM

was produced in 2012 while USGS DEMs were produced in 2014. Within both local and open

elevationmaps of the Göta river valley, it was observed that approximately 210 of the landslides

have occurred in the areas with lower than 40meter elevation. The areas that have an elevation

between 40 - 70 meters, have experienced 65 landslides. 9 landslides were observed within

the 70 - 100 m interval while there is only 1 landslide occurred between 100 - 130 meter and

not any landslide in the areas with more than 130 meter elevation. Within Rwanda, there are

only 2 landslides observed within 920 - 1500 meters interval. The areas with 1500 - 1730

meters elevation has experienced the most number of landslides (15) followed by 3rd class

(1730 - 2000 meters interval). 8 landslides were observed within the 4th class (2000 - 2350

meters) while only 3 landslides have occurred in the areas that have an elevation between 2350

- 4500 meters. Classification of the elevation maps was completed by using Natural Breaks

classification method.
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(a) Lantmäteriet Elevation Map (b) USGS Elevation Map

Figure 3.2.5: Elevation Maps of Göta River Valley Provided from Different Data Sources

Figure 3.2.6: Elevation Map of Rwanda
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Slope

Slope angle is one of the important factors for landslide susceptibility mapping. According to

the factor statistics, it is the factor that is commonly used by researchers [54]. It has a direct

relationship with landslide occurrences [55]. After precipitation, flow rate of the surface and

the moisture content in the soil depend on the degree of slope [56]. If slope degree is very

low, then the possibility of a landslide occurrence is low. It becomes very high as the slope

degree increases to moderate values. However, the susceptibility is moderate in high and very

high slope degree values [57]. Slope maps were produced from Digital Elevation Models by

using ArcGIS software for each of the analyses and they were reclassified with Natural Breaks

classificationmethod (Fig. 3.2.7, 3.2.8). In theGöta river valley,most of the previous landslides

(149) have occurred in the areas with 2° - 5° slope angle. In the areas with lower than 2° slope,

there are 27 landslides observed. 86 landslides fell into 5° - 8° while 19 landslides can be seen

in the areas with 8° - 14° slope. The areas with higher slope angle than 14° have experienced

only 2 landslides. Within Rwanda, it was observed that there is closer relationship with higher

slope degrees and landslide occurrences. There are 7 landslides occurred in the areas with 0°

- 5° slope angle and 6 landslides were observed in 5° - 11°. 11 landslides fell into 11° - 18° class

while 12 landslides occurred in 18° - 27° slope angles. There are only 3 landslides occurred in

the areas with higher slope angle than 27°.

Figure 3.2.7: Slope Map of Rwanda

18



CHAPTER 3. STUDY AREAS AND DATA

(a) Slope map produced by using
Lantmäteriet DEM

(b) Slopemap produced by usingUSGS
DEM

Figure 3.2.8: Slope maps of Göta River Valley produced by using DEMs from different data
sources

Distance to Roads

Since excavation is needed for construction of roads, it may create instability on the slopes

near the roads by decreasing the load on topography and reducing the leakage of water [54,

58]. Roads can often cause landslides withmajor damages [54]. Additionally, vibrationsmade

by vehicles that pass on the roads increase the possibility of landslide occurrence [56]. It is

selected as conditioning parameter by many researchers for landslide susceptibility analysis

[54]. Road shape file data were provided by Trafikverket (Swedish Transport Administration)

for local data analysis and OpenStreetMap for open data analyses (Fig. 3.2.9, 3.2.10). Distance

to road maps with 50 meter resolution were prepared by using Euclidean Distance tool in

ArcGIS. This factor was divided into 5 different buffer ranges for Göta river valley (0-100m,

100-250m, 250-500m, 500-750m, >750m) and 2 different buffer ranges for Rwanda (0-100m,

>100m), based on existing literature and locations of previous landslides. In the Göta river

valley, 134 of the previous landslides are located in the areas that are closer than 100m to the

roads. In 100-250m interval, 120 landslides occurred and 29 landslides fell into 3rd class, 250-

500m. There are no landslides in areas more than 500m away from the roads. In Rwanda, 37

of the 39 previous landslides are located in the areas that are less than 100 meter away from
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the roads.

(a) Distance to Roadsmap produced by
using Trafikverket road data

(b) Distance to Roadsmap produced by
using OpenStreetMap road data

Figure 3.2.9: Distance to Roads maps of Göta River Valley produced by using road data from
different data sources

Figure 3.2.10: Distance to Roads Map of Rwanda
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Lithology

Lithological characteristics of the area is widely accepted as a main landslide conditioning

parameter by researchers [54]. Since different rock units have different degrees of

susceptibility, it effects the slope instability and landslide occurrence [59, 60]. The lithology

map of the Göta river valley were provided from SGU, The Geological Survey of Sweden for

local data analysis (Fig. 3.2.11). For the open data analyses, the maps were extracted from

the Global Lithological Map of Hamburg University Institute for Geology (Fig. 3.2.12, 3.2.13).

The local lithology map consists of 24 classes; ”Tonalit-granodiorit”, ”Granit”, ”Granodiorit-

granit”, ”Kvartsarenit (Quartz arenite)”, ”Paragnejs (Paragneiss)”, ”Ultrabasisk intrusivbergart

(Ultrabasic intrusive rock)”, ”Anortosit (Anorthosite)”, ”Gabbroid-dioritoid”, ”Monzodioritisk-

granodioritisk gnejs”, ”Vacka (Greyhound)”, ”Sandsten (Sandstone)”, ”Granodioritisk-

granitisk gnejs”, ”Ytbergart (Supracrustal rock)”, ”Ögongnejs (Eye gneiss)”, ”Tonalitisk-

granodioritisk gnejs”, ”Dacit-ryolit”, ”Gnejs”, ”Diabas (Diabase)”, ”Skiffer (Schist)”, ”Basalt-

andesit”, ”Granitoid-siyenitoid”, ”Granitisk gnejs”, and ”Leukogranitisk gnejs”. The global

lithological map is more generalized and includes 5 classes for this area. These classes include;

”MetamorphicRocks”, ”AcidVolcanicRocks”; ”AcidPlutonicRocks”, ”Siliciclastic Sedimentary

Rocks” and ”Intermediate Volcanic Rocks”. The same map has 4 classes for Rwanda;

”Unconsolidated Sediments”, ”Basic Volcanic Rocks”, ”Water Bodies” and ”Metamorphic

Rocks”.

Figure 3.2.11: Lithology map of the Göta river valley provided from Geological Survey of

Sweden
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Figure 3.2.12: Lithology map of the Göta river valley provided from Geology Institute of

Hamburg University

Figure 3.2.13: Lithology Map of Rwanda provided from Geology Institute of Hamburg

University
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According to the lithology map provided from SGU, 225 of the previous landslides occurred

in the areas that have ”Tonalit-granodiorit” rock type. ”Granodiorit-granit” and ”Ögongnejs”

classes experienced 9 landslides while there are 5 landslides in ”Paragnejs” and 4 landslides

in ”Gabbroid-dioritoid”. According to the Global Lithological Map, in the Göta river valley,

276 of the landslides occurred in ”Metamorphic Rocks”. 7 landslides are located in ”Acid

Plutonic Rocks” and there is only 1 landslide in ”Acid Volcanic Rocks”. In Rwanda, 36 of the 39

landslides occurred in ”MetamorphicRocks”while there are only 3 landslides in ”BasicVolcanic

Rocks”.

Distance to Drainage

Saturation degree of the soil is important to consider and effective on landslide occurrences.

As proximity to drainage structures decreases, the slopematerial gets saturated and it becomes

more susceptible for landslide occurrences. Additionally, the increase in pore water pressure

leads erodes on slopes and decreases soil shear strength [61, 62].

For local data analysis, the drainage network was provided from SMHI (Swedish

Meteorological and Hydrological Institute), (Fig. 3.2.14). For open data analyses, drainage

network data were provided from OpenStreetMap (Fig. 3.2.14, 3.2.15). Afterwards, distances

to drainage networks were calculated. This factor was divided into 5 different buffer ranges for

Göta river valley (0-100m, 100-250m, 250-500m, 500-750m, >750m) and 2 different buffer

ranges for Rwanda (0-100m, >100m), based on existing literature and locations of previous

landslides. In the Göta river valley, 102 landslides are located in the areas that are closer than

100 meters to the drainage network. Within 100m - 250m interval, there are 111 landslides

observed. After 250 meters, the number of landslides decreased as the distance increased. 28

landslides were observed in 250m - 500m interval while 23 in 500m - 750m and 20 in >750m.

In Rwanda, 22 landslides occurred in the areas that are closer than 100 meters to the drainage

network.
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(a) Distance to Drainage
Network map provided from
Swedish Meteorological and
Hydrological Institute

(b) Distance to Drainage
Network map provided from
OpenStreetMap

Figure 3.2.14: Distance to Drainage Network maps of Göta River Valley provided from
different data sources

Figure 3.2.15: Distance to Drainage Network Map of Rwanda
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Land Cover

Land cover is the factor that has both positive and negative effects on landslide occurrences

[60]. Compared to the other factors, land cover is the one that is most connected to human

activities. Therefore, it is more possible to manage and change the land cover of an area

[63]. Different land cover types have different degrees of susceptibility. Vegetated areas are

considered less susceptible since plants absorb the water within the soil and make the slope

stronger with their roots [61]. On the contrary, barren areas are more susceptible to landslides

[64]. For open data analyses of theGöta river valley andRwanda country, land covermapswere

extracted from ESRI Global Land Cover Map (Fig. 3.2.16, 3.2.17). For local data analysis of the

Göta river valley, land cover map was provided from Lantmäteriet (Fig. 3.2.17). Lantmäteriet

land cover map was produced in 2012 and updated in 2018 by comparison between satellite

images from 2012 and 2018 respectively. ESRI land cover map was produced by using the

entire Sentinel-2 scene collection for each year from 2017 to 2021. It was indicated on the

website that more than 2,000,000 Earth observations from 6 spectral bands were used with

Artificial Intelligence training models to produce the maps [65]. Lantmäteriet land cover

map contains more detailed classes compared to ESRI land cover map (it includes around 35

classes). These classes were generalized for a better comparison with ESRI land cover map

as follows; ’Water Body’, ’Built-up Area’, ’Swamp’, ’Sandy Area’, ’Agricultural Land’, ’Bush’,

’Barren Land’ and ’Forest’. Differently, ESRI land cover map does not contain ’Sandy Area’

class.

Figure 3.2.16: Land Cover Map of Rwanda
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According to the land cover map provided from Lantmäteriet, within Göta river valley, 109

landslides fell into ”Agricultural Areas” while 105 landslides are located in ”Open Land”. 64

landslides occurred in ”Forest” and the rest 6 landslides can be seen in ”Artificial Areas” and

”Wetland”. ConsideringESRIGlobal LandCoverMap, 120 landslides occurred in ”Crops”while

78 in ”Grass” and 59 in ”Trees”. 22 landslides can be seen in ”Built-up Areas” and there are only

4 landslides located in ”Shrub”. In Rwanda, 15 landslides are located in ”Crops”. 10 landslides

occurred in ”Shrub” and 8 landslides in ”Trees”. Also, 6 landslides were observed in ”Built-up

Areas”.

(a) Land Cover map provided
from Lantmäteriet

(b) Land Cover map extracted
from ESRI Global Land Cover
Map

Figure 3.2.17: Land Cover maps of Göta River Valley provided from different data sources

Precipitation

Considering the causes of landslides that have occurred all over the world, it can be said that

precipitation is one of the most important factors. Precipitation increases pore water pressure

and makes the soil saturated [60]. Therefore, the shear strength of the soil decreases and the

slope gets more susceptible for landslide occurrences [54]. Additionally, the floods produced

by rainfall can cause shallow landslides [55].

For local data analysis of the Göta river valley, the mean annual precipitation data were

provided from the SwedishMeteorological andHydrological Institute (SMHI) in vector (point)
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format. This data was rasterized by using IDW interpolation technique within ArcGIS software

(Fig. 3.2.18). The most current precipitation data produced by SMHI includes the time

range 1991-2020. Therefore this time range was selected for the analysis. For open data

analyses, themean annual precipitation data were extracted from theGlobal PrecipitationData

prepared by the Climate Research Unit of University of East Anglia (Fig. 3.2.18, 3.2.19). The

current version of this data was released in 17 March 2021. It contains monthly precipitation

information and requires combining them to produce the annual precipitation data. Both

local data and global data shows mean annual precipitation for the period from 1991 to 2020.

All data (local and open) were classified by using Natural Breaks method. According to the

Göta river valley precipitation data provided from SMHI, 105 landslides occurred in the areas

with ”970-1024mm” annual average precipitation while this is 92 for ”905-970mm” and 78

for ”1024-1101mm”. According to the global precipitation data, 214 landslides occurred in

the areas that get ”835-861mm” annual precipitation as an average. 67 landslides are located

in ”812-835mm” and only 3 landslides can be seen within ”780-812mm”. Within Rwanda

17 landslides were observed in the areas that get ”1302-1402mm” precipitation. Number of

landslides increased until this point with 3 landslides in ”935-1078mm”, 5 landslides in ”1078-

1206mm” and 8 landslides in ”1206-1302mm”. However, only 6 landslides can be seen in

”1402-1575mm”.

(a) Precipitation map provided
from SMHI

(b) Precipitation data extracted
from the global data provided
from University of East Anglia

Figure 3.2.18: Precipitation maps of Göta River Valley provided from different data sources
for the period 1991 - 2020
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Figure 3.2.19: Precipitation Map of Rwanda for the period 1991 - 2020
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Chapter 4

Methodology

4.1 Geographic Information Systems

Geographic Information Systems are a tool used for operating and analyzing geographic data.

This data can be such as topographical, geological, human-related statistical or epidemiological

data. The main purposes of GIS are decision-making and solving problems that related to

geography, by using the data collected from the real world [66]. The areas GIS can be used

include; disaster-risk management, natural resource management, land use planning, vehicle

routing, telecommunication etc.

GIS is important for disaster-risk management since spatial and temporal variation can be

considered. One of the most important advantages of using GIS for disaster-risk management

is it allows users to generate alternative scenarios in a spatial context [67]. In landslide

susceptibility mapping, it can be used for the analysis of the causative factors [20].

4.2 Multi-Criteria Decision Making

MCDM (multi-criteria decision making) or in some cases MCDA (multi-criteria decision

analysis) is a tool for decision analysis and decision making. MCDM theory involves the

evaluation of several conflicting criteria whenmaking decisions relating to different fields such

as site selection or natural hazard assessment. Even though the problems related to MCDM

are common, the existence of MCDM is relatively new [68].

In order to perform a MCDM, a simple but correct model of the environment is required.

The model should result in various options and parameters in which the MCDA is used

for evaluating multiple conflicting criterias and thus helps to find the best among several
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alternatives [69]. In order to weigh the different criterias in a proper and correct way, several

methods can be used. One of the most common approaches is Frequency Ratio.

4.3 Frequency Ratio

The logic of landslide susceptibility analysis is to assume that landslides occur under specific

conditions related to some impact factors [70]. Since Frequency Ratio, as a quantitative

method, considers the relationship between spatial distribution of previously occurred

landslides and conditioning factors for future landslide prediction [54, 70], it was selected

as the main analysis method of this study. Additionally, qualitative methods are difficult to

apply in separate study areas [71]. Frequency Ratio is a statistical approach that evaluates the

probability of a certain phenomena by calculating the ratio between the density of phenomena

in a given class and the density of the same class [72, 73]. It is relatively easier to interpret and

understand compared to the other methods [74]. Moreover, it was observed that this method

gave more accurate results than the others in the previous studies [23, 75–77].

In the application of the method, conditioning parameters were divided into subclasses, the

number of landslide pixels located in each subclass was found for each parameter. Therefore,

frequency ratio values were calculated for each subclass. The equation for calculation of

frequency ratio is shown below:

FR =
Npix (Lij)

Npix (Sij)
(4.1)

where Npix (Lij) refers to the number of landslide pixels in the jth subclass of factor i and

Npix (Sij) refers to the number of pixels in the corresponding jth subclass of factor i.

If FR = 1, it is considered as the average value. An FR value higher than 1 indicates a stronger

relationship within the factor i and landslides.

Landslide Susceptibility Index (LSI) was acquired by computing the sum of FR values of each

subclass within factor i.

LSI =
∑n

i=1
Fri = Fr1 + Fr2 + . . .+ Frn (4.2)

New weights of each subclass were calculated by multiplying the division of the FR value of
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subclass j to the LSI value of factor i with 100.

Wij = 100× FRij

LSIi
(4.3)

Wij is the new weight of the subclass j, FRij is the Frequency Ratio value of the subclass j and

LSIi is Landslide Susceptibility Index value of factor i.

Weights of each conditioning factor were calculated according to the maximum and minimum

weights of their subclasses. Finally, the final landslide susceptibility map was prepared by

summing up all of the factors by considering weights.

LSM =
∑

FR = (SLP × w) + (DSR× w) + (S × w) + (PRE × w)

+(LC × w) + (DSD × w) + (LTH × w) + (ELV × w)
(4.4)

LSM: Landslide Susceptibility Map, FR: Frequency Ratio, w: Weight of the Factor, SLP:

Slope, DSR: Distance to Roads, S: Soil, PRE: Precipitation, LC: Land Cover, DSD: Distance

to Drainage, LTH: Lithology, ELV: Elevation.

4.4 Receiver Operating Characteristic

ROC is a commonmethod to compute accuracy rates of the result landslide susceptibilitymaps.

ROC curve is presented in a graph with x and y axis that symbolize ’sensitivity’ and ’specificity’

[78]. Where, sensitivity stands for the ratio of correctly identified positive observations while

specificity is correctly identified negative observations (i.e. sensitivity is the ratio of correctly

identified unstable pixels above a desired threshold on the total observed unstable pixels and

specificity is the ratio of correctly identified stable pixels below the desired threshold on the

total observed stable pixels) [71, 78]. It is possible to use the AUC (Area Under Curve) of ROC

curve as a statistical measurement of the accuracy rates ofmodels [78]. The AUC value is equal

to the total area of polygons between the thresholds and can be calculated as below;
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AUC =
n+1∑
i=1

1

2

»
(xi − xi+1)2.(yi + yi+1)

2 (4.5)

where xi is (1-specificity) and yi is sensitivity at the threshold i when, xn+1 = 1 and yn+1 =

1.

An AUC value between 0.9 - 1 is considered very high accuracy, while 0.8 - 0.9 is high accuracy,

0.7 - 0.8 is acceptable, 0.6 - 0.7 is low accuracy and 0.5 - 0.6 is very low accuracy [78]. A sample

ROC plot can be seen in Fig. 4.4.1:

Figure 4.4.1: A sample ROC plot where line A is line of no discrimination (AUC value is 0.5)

and line B represents the accuracy of model B with the values of specificity and sensitivity

calculated for different thresholds. The AUC value is 0.71 for this graph.

(Source: https://lup.lub.lu.se/luur/download?func=downloadFilerecordOId=3559066fileOId=3559067)

4.5 Analysis

The purpose of the literature review was to select the appropriate method and causative factors

for landslide susceptibility mapping. After they have been selected and corresponding data
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were acquired, theywere processed for the analysis. Theweightingwas performedusingMCDA

- FR technique in a GIS environment. ArcGIS and Microsoft Excel were used as softwares.

The comparison parameter maps were first reclassified. For the distance based criteria, 100m,

250m, 500m and 750m were used as reference values. For slope and precipitation, Natural

Breaks classification method was used. % 75 (213 points for Göta river valley and 29 points

for Rwanda) of the previous landslide locations were randomly selected for the preparation

of landslide susceptibility maps and % 25 (71 points for Göta river valley and 10 points for

Rwanda) for the validation of the maps. By using the inventory raster maps, tabulation task

was performed and frequency ratio values of each class for each criteria were calculated by

using the number landslide pixels that each class contains. Therefore, weights of each factor

and newweights of each class could be computed. After the final reclassification, the parameter

maps were multiplied by their weights and summed up together. A flow chart that represents

the process was given below (Fig. 4.1).

Figure 4.1: Flow chart represents the analysis process.
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Table 4.5.1: FR Analysis for Göta River Valley by using Local Data

Factor Class Class Pixels (y) Landslide Pixels (x) FR (x/y)

Slope 0 - 2 462364 292 0.000631537
2 - 5 322513 429 0.001330179
5 - 8 189632 221 0.001165415
8 - 14 86559 55 0.000635405
14 - 41 24364 17 0.000697751

Rainfall 798 - 905 190260 15 7.88395E-05
905 - 970 246826 265 0.001073631
970 - 1024 359250 242 0.000673626
1024 - 1101 260118 473 0.001818405
1101 - 1237 45658 20 0.000438039

Elevation -0.4 - 34 136625 655 0.004794145
34 - 68 280044 232 0.000828441
68 - 98 314800 127 0.000403431
98 - 133 247230 1 4.04482E-06
133 - 226 111052 0 0

Land Cover Wetland 69075 11 0.000159247
Agriculture 139182 389 0.002794902
Open Land 110550 276 0.002496608

Artificial Surfaces 61726 83 0.001344652
Water 97295 0 0
Forest 611932 256 0.000418347

Soil Type Berg 653689 245 0.000374796
Torv 18377 0 0

Lera–silt 250316 743 0.002968248
Vatten 44210 0 0
Morän 77102 9 0.000116728

Isälvssediment 31263 5 0.000159933
Postglacial sand–grus 14804 13 0.000878141

Distance to Drainage 0 - 100 128604 191 0.001485179
100 - 250 165852 301 0.001814871
250 - 500 236164 198 0.0008384
500 - 750 195766 181 0.000924573
750 - 2400 374918 144 0.000384084

Lithology Tonalit-granodiorit 554672 806 0.001453111
Granit 152272 114 0.00074866

Granodiorit-granit 150242 19 0.000126463
Paragnejs 73703 61 0.000827646

Gabbroid-dioritoid 17020 4 0.000235018
Ögongnejs 24781 11 0.000443888

Other Rock Types 117070 0 0

Distance to Roads 0 - 100 521100 648 0.001243523
100 - 250 357743 325 0.000908473
250 - 500 160212 42 0.000262153
500 - 750 44706 0 0
750 - 2559 5999 0 0
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Table 4.5.2: Factor and Class Weights for Local Data Göta River Analysis

Factor Class Class Weight Factor Weight

Slope 0 - 2 14 1.60867479
2 - 5 29
5 - 8 26
8 - 14 14
14 - 41 15

Rainfall 798 - 905 1 2.72031089
905 - 970 26
970 - 1024 16
1024 - 1101 44
1101 - 1237 10

Elevation -0.4 - 34 79 5.07571872
34 - 68 13
68 - 98 6
98 - 133 0
133 - 226 0

Land Cover Wetland 2 2.473507508
Agriculture 38
Open Land 34

Artificial Surfaces 18
Water 0
Forest 5

Soil Type Berg 8 4.213118451
Torv 0

Lera–silt 65
Vatten 0
Morän 2

Isälvssediment 3
Postglacial sand–grus 19

Distance to Drainage 0 - 100 56 1.676938679
100 - 250 25
250 - 500 15
500 - 750 0
750 - 2400 2

Lithology Tonalit-granodiorit 37 2.419166741
Granit 19

Granodiorit-granit 3
Paragnejs 21

Gabbroid-dioritoid 6
Ögongnejs 11

Other Rock Types 0

Distance to Roads 0 - 100 51 3.288500785
100 - 250 37
250 - 500 10
500 - 750 0
750 - 2559 0
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Table 4.5.3: FR Analysis for Göta River Valley by using Open Data

Factor Class Class Pixels (y) Landslide Pixels (x) FR (x/y)

Slope 0 - 2 435808 386 0.000885711
2 - 6 323888 346 0.001068271
6 - 10 200334 197 0.000983358
10 - 16 98798 65 0.000657908
16 - 53 28279 20 0.000707239

Rainfall 780 - 812 16643 34 0.002042901
812 - 835 21638 315 0.0145577231
835 - 861 29872 666 0.022295126

Elevation -13 - 37 140281 666 0.004747614
37 - 73 294660 229 0.000777167
73 - 105 316059 119 0.000376512
105 - 140 236709 1 4.2246E-06
140 - 239 101941 0 0

Land Cover Water 102668 3 2.92204E-05
Trees 666434 217 0.000325614
Grass 54651 194 0.003549798

Flooded Vegetation 194 0 0
Crops 122901 366 0.002978007

Scrub/Shrub 51409 9 0.000175067
Built Area 90926 226 0.002485538
Bare Ground 576 0 0

Soil Type Podzol 596179 799 0.001340202
Cambisol 455361 216 0.000474349
Water 24411 0 0

Distance to Drainage 0 - 100 421383 566 0.001343196
100 - 250 342113 363 0.001061053
250 - 500 202202 68 0.000336297
500 - 750 95922 18 0.000187652
750 - 2400 36958 0 0

Lithology Metamorphic 897233 960 0.001069956
Acid Volcanic 49269 14 0.000284154
Acid Plutonic 118362 41 0.000346395

Siliciclastic Sedimentary 5446 0 0
Intermediate Volcanic 12132 0 0

Distance to Roads 0 - 100 553521 618 0.001116489
100 - 250 357361 352 0.000984998
250 - 500 144488 45 0.000311445
500 - 750 41485 0 0
750 - 2559 5257 0 0
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Table 4.5.4: Factor and Class Weights for Open Data Göta River Valley Analysis

Factor Class Class Weight Factor Weight

Slope 0 - 2 20 1
2 - 6 24
6 - 10 22
10 - 16 15
16 - 53 16

Rainfall 780 - 812 5 5.459117623
812 - 835 37
835 - 861 57

Elevation -13 - 37 80 8.428868705
37 - 73 13
73 - 105 6
105 - 140 0
140 - 239 0

Land Cover Water 0 3.899954076
Trees 3
Grass 37

Flooded Vegetation 0
Crops 31

Scrub/Shrub 1
Built Area 26
Bare Ground 0

Soil Type Podzol 73 7.743778315
Cambisol 26
Water 0

Distance to Drainage 0 - 100 45 4.809397857
100 - 250 36
250 - 500 11
500 - 750 6
750 - 2400 0

Lithology Metamorphic 62 6.596898619
Acid Volcanic 16
Acid Plutonic 20

Siliciclastic Sedimentary 0
Intermediate Volcanic 0

Distance to Roads 0 - 100 46 4.851334187
100 - 250 40
250 - 500 12
500 - 750 0
750 - 2559 0
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Table 4.5.5: FR Analysis for Rwanda by using Open Data

Factor Class Class Pixels (y) Landslide Pixels (x) FR (x/y)

Slope 0 - 5 7665 11 0.001435095
5 - 11 6915 9 0.001301518
11 - 18 5023 16 0.003185347
18 - 27 3907 22 0.005630919
27 - 55 1765 6 0.003399433

Rainfall 935 - 1078 10241 12 0.001171761
1078 - 1206 2392 11 0.004598662
1206 - 1302 4633 6 0.001295057
1302 - 1402 4276 20 0.004677268
1402 - 1575 3781 15 0.003967204

Elevation 921 - 1507 10011 8 0.000799121
1507 - 1733 6365 24 0.003770621
1733 - 2004 4341 16 0.003685787
2004 - 2351 2989 12 0.004014721
2351 - 4500 1601 4 0.002498438

Land Cover Water 1652 0 0
Trees 4175 15 0.003592814
Grass 979 0 0

Flooded Vegetation 288 0 0
Crops 6828 19 0.00278266

Scrub/Shrub 8232 17 0.002065112
Built Area 3113 13 0.004176036
Bare Ground 5 0 0
Snow/Ice 57 0 0

Soil Type Ferralsol 9450 15 0.001587302
Lithosol 666 1 0.001501502
Gleysol 754 0 0
Andosol 1911 4 0.002093145
Nitosol 9164 41 0.004474029
Luvisol 118 0 0
Water 2206 0 0

Cambisol 990 3 0.003030303
Vertisol 71 0 0

Distance to Drainage 0 - 100 10204 35 0.003430027
> 100 15156 29 0.001913434

Lithology Unc. Sediments 1057 0 0
Basic Volcanic 912 7 0.007675439

Water 991 0 0
Metamorphic 22481 59 0.002624438

Distance to Roads 0 - 100 20490 61 0.002977062
> 100 4855 3 0.00061792
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Table 4.5.6: Factor and Class Weights for Open Data Rwanda Analysis

Factor Class Class Weight Factor Weight

Slope 0 - 5 9 1.329839733
5 - 11 8
11 - 18 21
18 - 27 37
27 - 55 22

Rainfall 935 - 1078 7 1.024839813
1078 - 1206 29
1206 - 1302 8
1302 - 1402 29
1402 - 1575 25

Elevation 921 - 1507 8 1
1507 - 1733 24
1733 - 2004 16
2004 - 2351 12
2351 - 4500 4

Land Cover Water 0 1.520201194
Trees 28
Grass 0

Flooded Vegetation 0
Crops 22

Scrub/Shrub 16
Built Area 33
Bare Ground 0
Snow/Ice 0

Soil Type Ferralsol 12 1.619736647
Lithosol 11
Gleysol 0
Andosol 16
Nitosol 35
Luvisol 0
Water 0

Cambisol 23
Vertisol 0

Distance to Drainage 0 - 100 64 2.948185907
> 100 35

Lithology Unc. Sediments 0 3.422560102
Basic Volcanic 74

Water 0
Metamorphic 25

Distance to Roads 0 - 100 61 3.013959291
> 100 3
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Chapter 5

Results and Discussion

5.1 Landslide Susceptibility Maps

The figures shown below (Fig. 5.1.1, 5.1.2, 5.1.3) represent the final landslide suscptibility maps

prepared for Göta river valley and Rwanda country by using local and open data.

Figure 5.1.1: Landslide Susceptibility Map of Göta River Valley by using Local Data
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Figure 5.1.2: Landslide Susceptibility Map of Göta River Valley by using Open Data

Figure 5.1.3: Landslide Susceptibility Map of Rwanda
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5.2 Validation

For the validation of the landslide susceptibility maps, ROC (Receive Operator Characteristic)

method was used. In this method, an AUC (Area Under Curve) value closer to 1 is considered

as higher accuracy. For Rwanda landslide susceptibility map, test points acquired from NASA

Global Landslide Map were used. For Göta river area, previous landslide locations acquired

from Lantmäteriet in line format and test points were produced from them. ROC curves of the

analysis results can be seen in Fig 5.2.1, 5.2.2 and 5.2.3:

Figure 5.2.1: ROC curve of Göta river valley local data analysis
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Figure 5.2.2: ROC curve of Göta river valley open data analysis

Figure 5.2.3: ROC curve of Rwanda open data analysis
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5.3 Discussion

The result maps of local data and open data analyses of the Göta river valley were compared.

It was observed that both of the maps indicate very high susceptibility for the buffered area

around the river. In the first result map (result of local data analysis), approximately 205 of

284 known landslides fell into the ‘very high susceptibility’ zones while 61 are located in ‘high

susceptibility’ zones, which together cover approximately 23% of the total study area. These

areas are mostly occupied by agricultural fields and have silted and/or clayey soils. Only 14 of

known landslides were observed in the ‘moderate susceptibility’ areas and 4 of landslides fell

into the ‘low susceptibility’ category. For the second result map (result of open data analysis),

it was observed that the number of previous landslides located in ”moderate susceptibility”

category is same with the local data analysis. 5 landslides could be seen in the areas with

”low susceptibility”. 192 landslides were located in the areas with ”very high susceptibility”

while 73 landslides were observed in ”high susceptibility” category. They together cover around

42% of the total area. It was observed that the areas with ’Podzol’ soil type were indicated as

’highly susceptible’ or ’very highly susceptible’ since soil was one of the most important factors

according to the frequency ratio analysis results.

In addition to the Göta river valley comparison, the result map prepared for Rwanda was

compared with another Rwanda landslide susceptibility map. The Ministry of Disaster

Management and Refugee Affairs of Rwanda prepared a national risk atlas for better

assessment of possible future natural disasters. This document also includes a landslide

susceptibility map of Rwanda (Fig. 5.3.1). For the preparation of this map, Analytic Hierarchy

Process was used as the analysis method. Causative factors selected for the analysis include;

lithology, soil type, soil depth, land cover, distance to road, slope, rainfall. Some differences

can be seen between the result maps of the two different analyses. Since data sources are

different than the ones within this study, it can affect the result landslide susceptibility map.

It was observed that the Rwanda result map of this study indicates more areas as susceptible.

However, both maps shows western part of the country as more susceptible. There are some

areas that were shown as lowly susceptible in the result map within National Risk Atlas,

however, shown asmoderate in the resultmap of this study. Additionally, in thewestern part of

the country, some areas were shown as moderate within the map of the atlas, however, shown

as highly susceptible in the resultmap of this study. This can depend on theway of classification

of themaps. In this study, Natural Breaksmethodwas used for classification of the resultmaps.
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Figure 5.3.1: Landslide susceptibility map of Rwanda prepared by the Ministry of Disaster

Management and Refugee Affairs of Rwanda

(Source: https://www.gfdrr.org/en/publication/rwanda-national-risk-atlas)

Moreover, since the methods used for the analyses have different approaches (heuristic

and statistical), opinions of experts and locations of previous landslides may lead to some

differences within the results. The landslide inventory used in the analysis of Rwanda, within

this study is not complete. Therefore, another comparison is necessary when it is possible

analyze and validate the area with a complete landslide inventory.
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During the analysis, it was observed that open and local elevation data of Göta river valley were

nearly same. With respect to precipitation, there were not significant difference between the

two sources, however the interval of the local precipitation data was wider. Although the land

cover provided from Lantmäteriet has more details than the map extracted from ESRI global

land cover map, it includes subclasses of main land cover classes which need to be generalized

for the analysis. Therefore, the land cover maps were relatively similar. Additionally, the

drainage and road maps were nearly same. Lithology and soil maps were the main differences

between open/local analysis of the study area. According to the result maps, it can be seen that

soil type was the main parameter that made the main difference between the analyses of the

Göta river valley. The local soil map used in this analysis was generalized by SGU, however

a non-generalized map also exists. It has 144 soil classes and some part of the map is shown

below (Fig. 5.3.2):

Figure 5.3.2: Detailed Soil Map of Göta River Valley

By using the satellite images provided fromGoogle Earth Pro software (Fig. 5.3.3, 5.3.4, 5.3.5),

it was observed that highly susceptible areas mostly consist of agricultural fields for both of

the study areas. In addition to this, it could be seen that there are some settlements located

in highly susceptible areas within Rwanda. Moreover, these areas have very high slope angles,

compared to the areas within Göta river valley.
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Figure 5.3.3: It was observed from the satellite view that highly susceptible areas in Göta river

valley mostly consist of agricultural fields

Figure 5.3.4: Satellite view shows that agricultural fields and settlements form highly

susceptible areas in Rwanda

47



CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.3.5: 3d view shows that highly susceptible areas in Rwanda have very high slope

degrees
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Chapter 6

Conclusion and Future Work

In this study, the performance of publicly available geospatial data was investigated for

landslide susceptibility analysis by comparing it with the data provided from several public

institutions of Sweden. To ensure the performance of the analysis, another area that has no

available local geospatial data was analyzed afterwards. A statistical method, Frequency Ratio,

was used for the implementation. 8 conditioning parameters were selected for the analyses;

elevation, soil type, slope, precipitation, land cover, distance to drainage network, lithology,

distance to roads. Since there is still not a clear explanation related to the relationship between

the pixel size of the input maps and the accuracy level of the analysis, spatial resolution issue

was ignored in this study. 50m x 50m spatial resolution was used for all of the analyses. Two

areas were selected as study area; Göta river valley (Västra Götaland, Sweden) and Rwanda.

For the validation of the produced maps, the ROC method was implemented by using testing

inventory landslide points. %75 of inventory data were randomly selected for preparation of

landslide susceptibility maps while %25 were kept for the validation of the result maps. The

AUC graphs showed that local data Göta river valley analysis map has the highest accuracy

(% 92.9) with greater Area Under Curve, followed by Göta river valley (% 90.2) and Rwanda

(% 83.1) analysis maps produced by applying open data. There is % 7 difference between

the accuracy rates of open data Göta and Rwanda result maps (% 90.2 and % 83.1). It

was considered that the landslide inventory affects the results and accuracy levels since it is

necessary to use it for both training and testing. Also, the result curve of Rwanda analysis

seems different than Göta river area result curves. The reason is there are fewer previously

occurred landslide points used for Rwanda analysis, compared to Göta river area (39 vs 284).
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The factors used in the analyses did not have the same importance levels for the study areas.

Slope angle was not a critical triggering factor for the Göta river valley, while, it was more

effective on Rwanda. In the Göta river valley, most of the landslides have occurred in the areas

with 0° - 6° slope angle. In Rwanda, the areas that have a slope angle between 11° - 28° have

experienced more number of landslides, compared to the other areas. It was observed that, in

the Göta river, the number of landslides increases until 1100 mm annual rainfall. In Rwanda,

there is not a regular increase in the number of landslides with the increase in the amount

of rainfall. Most number of landslides were observed in the areas that have 1302 - 1402 mm

annual rainfall, however, there is less number of landslides observed in the areas that have 1402

- 1575 mm annual rainfall. Land cover was not a decisive factor for Rwanda as ’Trees’, ’Crops’,

’Shrub’ and ’Built Area’ classes have approximately same number of landslides. In the Göta

river valley, it was observed that landslides occurred more in the agricultural areas, compared

to the other areas. Soil type was not a critical factor for Rwanda analysis as it was for Göta river

valley analyses. ’Silted-clayey’ soil was the most landslide susceptible soil type for local data

analysis of Göta river valley while it was ’Podzol’ and ’Nitosol’ for open data analyses of Göta

river valley and Rwanda. Considering elevation, different results were provided from the study

areas. In the Göta river valley, it was observed that most of the landslides occurred in the areas

with less than 40meters elevation. In Rwanda, most of the landslides are located in 1500 - 1730

meters interval. Lithology was important for both of the study areas. Within Göta river valley,

most of the landslides are located in the areas with ”tonalit-granodiorit” rock type according to

the local lithology data, while it was ”metamorphic rocks” for both of the open data analyses.

Regarding the distance based factors, it can be seen that more landslides occurred in the 100

meter buffered area of drainage network and roads.

By using the satellite images provided from Google Earth Pro software, the areas with high

landslide susceptibility were observed. It could be seen that the highly susceptible areas within

Rwanda have very high slope angles. However, this is not the case for the Göta river valley,

according to 3d visualization and slope angle map of the area. More susceptible areas have

less slope angles in Göta river valley. Since ”soil type” is one the most important conditioning

parameters according to the Frequency Ratio analysis, it was assumed that the landslides

previously occurred in this area were most likely related to the soil type ”Silted-clayey”. In

addition to this, it can be seen that there are many residences located in highly susceptible

areas within Rwanda. This situation requires more serious precautions in Rwanda to avoid

damages on human lives as a result of possible future landslides.
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The most important disadvantage of open data landslide susceptibility analysis is landslide

inventories. Currently, the only open source landslide inventory map is Global Landslide Map

of NASA and it does not include all of the landslides occurred. Therefore, it does not allow

researchers to do small-scale regional analyses. Alternatively, other methods can be applied

that do not require training and testing data (e.g. Analytic Hierarchy Process) when there

is not available inventory data for the study area. It was observed that usage of local data is

beneficial when it comes to the parameters such as soil type, lithology and land cover since

local institutions focus on specific areas within the country and prepare more detailed maps.

The data that were produced from digital elevation models can be easily replaced with local

data.

In the future studies, the other methods can be applied to the same study areas to compare

local and open data performances as it is necessary to validate the results with other methods.

Different factor combinations can be used with the same method and study areas to see the

effect of causative factors on the accuracy level of landslide susceptibility maps. Since there is

not an alternative globally available inventory data, it can be useful to try another inventory

data for Rwanda, provided from local institutions to see the changes in the performance of the

analysis. Moreover, other open data sources can be used as an alternative.

Consequently, although it is preferred to use the data provided from local institutions, it

was observed that globally available open data demonstrate strong potential for landslide

susceptibility mapping when high-resolution local data are not available. Usage of open data

can help for better decision making especially in low and middle income countries and it can

be possible to reduce damages from future landslides in these countries.
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