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Abstract 

Above-ground biomass (AGB) and leaf area index (LAI) are two critical crop parameters 

for evaluating crop growth, health, and productivity. Various techniques have been used in 

the past for the estimation of crop parameters. Development and accessibility of remote 

sensing technologies by airborne, ground devices, satellites opened a new era for estimating 

the crop parameter. In this paper, the crop parameters LAI and AGB were estimated using 

Unmanned Aerial Vehicle LiDAR and ground-based Terrestrial Laser Scanning (TLS) data 

applying three machine learning methods over four crop types with different canopy 

properties; wheat, sugarbeet, soybean and maize. The study compared how the predictive 

performance of three modelling techniques multiple linear regression (MLR), random forest 

regression (RFR), support vector machine regression (SVR) differ, how the predictability 

performance differ between crop parameters, crop types and LiDAR sensors. The analysis 

was carried out using all the crop samples obtained and the crop-specific. Two statistical 

criteria were used as evaluation metrics, the coefficient of determination (R2) and Root 

Mean Square Error (RMSE). The results obtained from the models applied with all crop 

samples indicated that the predictability performance of AGB was over 0.80 𝑅2 and the LAI 

was predicted with the 𝑅2 of 0.76. In crop-specific modelling, the estimation of soybean 

and maize AGB and LAI parameters with models applied with features obtained from both 

UAV-LS and TLS data was satisfactory. The prediction was failed on sugar beet AGB 

estimation (𝑅2 in 0.54–0.76 range) and wheat LAI prediction (𝑅2 in 0.46–0.86 range). 

Based on the model performances, the RFR and SVR models performed better than the 

linear model MLR in most of the analyses. The models compared to the data of the sensors 

used in this study, the models applied with the features obtained from UAV-LS and TLS 

gave similar 𝑅2  and 𝑅𝑀𝑆𝐸 when made with all crop samples. However, in crop-specific 

analyses, the models applied with the features obtained from UAV-LS showed a powerful 

performance in all LAI estimation models. Although the results obtained from models 

applied using TLS and UAV-LS features to estimate AGB were very close, only sugarbeet 

AGB estimation gave better results with TLS data than UAV-LS. Given these results, the 

lacking application in crop studied with LiDAR remote sensing will be a step to close to fill 

the gap using both TLS and UAV-LS derived data for several crop types. 

Keywords: Terrestrial LiDAR; UAV LiDAR; Above Ground Biomass; Leaf Area Index; 

Machine learning; Precision Agriculture 
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Makine Öğrenimi Yaklaşımları Kullanılarak İnsansız Hava Aracı ve Karasal LiDAR verilerinden 

Yaprak Alanı İndeksi ve Yer Üstü Biyokütle Tahmini  

Toprak üstü biyokütle (AGB) ve yaprak alanı indeksi (LAI), bitki büyümesini, sağlığını ve üretkenliğini 

değerlendirmek için iki kritik bitki parametresidir. Bitki parametrelerinin tahmini için geçmişte çeşitli 

teknikler kullanılmıştır. Hava, yer cihazları, uydular tarafından uzaktan algılama teknolojilerinin 

geliştirilmesi ve erişilebilirliği, bitki parametresini tahmin etmek için yeni bir dönem açtı. Bu yazıda, bitki 

parametreleri LAI ve AGB, İnsansız Hava Aracı LiDAR ve yer tabanlı Karasal Lazer Tarama (TLS) verileri 

kullanılarak, farklı bitki özelliklerine sahip dört ürün türü üzerinde üç makine öğrenimi yöntemi uygulanarak 

tahmin edilmiştir; buğday, şeker pancarı, soya fasulyesi ve mısır. Çalışma, çoklu doğrusal regresyon (MLR), 

rastgele orman regresyonu (RFR), destek vektör makine regresyonu (SVR) olacak şekilde, üç modelleme 

tekniğinin tahmin performansının nasıl farklılık gösterdiğini, öngörülebilirlik performansının bitki 

parametreleri, bitki türleri ve LiDAR sensörleri arasında nasıl farklılık gösterdiğini karşılaştırdı. Analiz, önce 

elde edilen tüm bitki numuneleri ile ve her bitki türüne göre ayrı ayrı gerçekleştirilmiştir. Değerlendirme 

ölçütleri, belirleme katsayısı (R2) ve Ortalama Kare Hatası (RMSE) olmak üzere iki istatistiksel kriter 

kullanılmıştır. Tüm bitki örnekleriyle uygulanan modellerden elde edilen sonuçlar, AGB'nin öngörülebilirlik 

performansının 0.80 R^2'nin üzerinde olduğunu ve LAI'nin 0.76 R^2 ile tahmin edildiğini göstermiştir. 

Ürüne özel modellemede, hem UAV-LS hem de TLS verilerinden elde edilen özelliklerle uygulanan 

modellerle soya fasulyesi ve mısır AGB ve LAI parametrelerinin tahmini tatmin edici olmuştur. Şeker pancarı 

AGB tahmininde (0,54-0,76 aralığında R^2) ve buğday LAI tahmininde (0,46-0,86 aralığında R^2) tahmin 

başarısız oldu. Model performanslarına dayalı olarak, analizlerin çoğunda RFR ve SVR modelleri doğrusal 

model MLR'den daha iyi performans göstermiştir. Modeller, bu çalışmada kullanılan sensörlerin verileriyle 

karşılaştırıldığında, UAV-LS ve TLS'den elde edilen özelliklerle uygulanan modeller, tüm Bitki numuneleri 

ile yapıldığında benzer R^2 ve RMSE vermiştir. Ancak ürüne özgü analizlerde UAV-LS'den elde edilen 

öznitelikler ile uygulanan modeller tüm LAI tahmin modellerinde güçlü bir performans göstermiştir. AGB 

tahmini için TLS ve UAV-LS özellikleri kullanılarak uygulanan modellerden elde edilen sonuçlar çok yakın 

olmasına rağmen, sadece şeker pancarı AGB tahmini TLS verileri ile UAV-LS'ye göre daha iyi sonuçlar 

vermiştir. Bu sonuçlar göz önüne alındığında, LiDAR uzaktan algılama ile çalışılan bitkideki eksik 

uygulama, çeşitli bitki türleri için hem TLS hem de UAV-LS'den türetilen verileri kullanarak boşluğu 

doldurmak için bir adım olacaktır.  

Anahtar Kelimeler: Karasal LiDAR; İHA LiDAR; Yer Üstü Biyokütle; Yaprak Alan İndeksi; Makine 

öğrenme; Hassas tarım 
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1. INTRODUCTION 

The human population in the world is increasing day by day. Meeting the food demand relative 

to the growing population will require a significant increase in crop production. Precision 

agriculture (PA) which is the science of helping increase crop yields using high-tech sensors 

and analysis tools, can tackle this demand (Singh et al., 2020). PA is a popular concept adopted 

worldwide to increase production, shorten labour time and provide efficient fertilizer and 

irrigation systems (Singh et al., 2020). Accordingly, PA requires accurate and high-efficiency 

screening of phenotypic traits. Precise and accurate phenotypic variables assessment is crucial 

for advancing crop yield and crop breeding (Jin et al., 2020). Among these variables, above-

ground biomass (AGB) and leaf area index (LAI) are two critical parameters for evaluating 

crop growth, health, and productivity.  

Various techniques have been used in the past for the estimation of crop parameters. LAI and 

AGB can be measured directly by destructive sampling and non-destructive field 

measurements. The traditional, destructive methods are time-consuming, require intensive 

work, and have high costs(Jimenez-Berni et al., 2018). Particularly in the studies performed in 

large areas, data may be lost or can be misinterpreted, which can lead to a decrease in confidence 

in accuracy. Development and accessibility of remote sensing technologies by airborne, ground 

devices, satellites opened a new era for estimating the crop parameter. With these technologies, 

it is possible to rapidly create reliable and accurate maps of extended cropland by exploiting 

the different types of remote sensing signals of crops depending on their status (Quebrajo et al., 

2018). 

The data can be obtained using passive and active remote sensing sensors such as optical 

cameras, radar sensors, terrestrial or UAV light detection and ranging (LiDAR). However, the 

data derived using passive optical remote sensing sensors usually can be susceptible to 

interference from environmental effects and saturation at high biomass and LAI (Jin et al., 

2020). In contrast, active remote sensing systems like LIDAR can provide accurate three-

dimensional (3D) output and a reliable estimation. Deery et al. (2014) indicated that the images 

produced by LiDAR point clouds retain image quality and data reliability in biomass 

estimations by not being affected by changes in ambient light conditions and shadows which 

can cause overexposure or underexposure in optical sensors, like RGB cameras.  Wang et al. 

(2017) studied the potential of hyperspectral and LiDAR data for a better estimation of the 

maize biomass. He stated the most robust relationship was observed between LiDAR-derived 
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metrics with field-observed biomass, while all the vegetation indices derived from 

hyperspectral images showed weak correlation.Moreover, Walter et al. (2019) estimated wheat 

biomass with LiDAR-derived vegetation height and volume. He demonstrated the correlation 

between field-measured AGB, and LiDAR Projected Volume (LPV) and field-measured 

canopy height and LiDAR Canopy Height (LCH) were generally strong. Nevertheless, LiDAR 

data acquisition and processing costs are relatively high to monitor large areas (Dan et al., 

2018).  

The estimation of AGB and LAI is not directly possible using remote sensing derived data. 

These parameters can be obtained in two ways, either using physical methods like radiative 

transfer models or statistical models like parametric and non-parametric regression methods 

(Verrelst et al., 2015). Statistically, parameters are estimated by creating a regression 

relationship between features, independent variable derived from remote sensing data, and 

dependent variable ground-truth data collected in the field. Among the most popular statistical 

methods, machine learning is increasingly being used for crop parameter estimations due to 

their flexibility and capability of linear and nonlinear data sets (Ali et al., 2015). The most 

common machine learning methods for estimation of crop parameters are artificial neural 

network (ANN)(González-Sanchez et al., 2014; Jin et al., 2020; Kucukonder et al., 2016), 

multiple Linear regression (MLR) (Ali et al., 2015; Comba et al., 2020; González-Sanchez et 

al., 2014), k-nearest neighbour (k-NN)(Fu et al., 2019; González-Sanchez et al., 2014; Han et 

al., 2019),random forest regression (RFR)(Breiman, 2001; Fu et al., 2019; Jin et al., 2020) and 

support vector machine regression (SVR)(Clevers et al., 2007; Durbha et al., 2007; García-

Gutiérrez et al., 2013). 

LiDAR is an active remote laser-based technology that is well established in its application to 

derive vegetation features for forest areas (Brede et al., 2017; Jimenez-Berni et al., 2018). 

Applications in crops still remain underdeveloped. There are a few studies performed on crops. 

For instance, Harkel et al. (2019) estimated biomass using the 3DPI algorithm and crop height 

applying the linear regression methods and stated that both 3DPI and height estimation on sugar 

beet, winter wheat worked well while estimation on potato was less reliable. Han et al. (2019) 

used structural and spectral information provided by remote sensing from UAV combined with 

machine learning to estimate maize biomass and concluded that the combination of machine 

learning and UAV remote sensing is a promising alternative for AGB prediction. Comba et al. 

(2020) evaluated LAI in vineyards by a multivariate linear regression model using crop canopy 

descriptors derived from the UAV-LS 3D point clouds, and evaluation results showed a good 
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correlation between the LiDAR-derived crop canopy descriptors estimated and field-measured 

LAI.  

A comprehensive study of AGB and LAI estimation using LiDAR-derived features with the 

crops applying several statistical methods have not been fully explored and utilized. This 

research will be a step to close to fill the gap using both Terrestrial Laser Scanner (TLS) and 

UAV-LS derived data for several crop types. 

The objective of this thesis is to estimate the crop parameters LAI and AGB using Unmanned 

Aerial Vehicle LiDAR and ground-based Terrestrial Laser Scanning (TLS) data applying 

machine learning methods over four crop types with different canopy properties; wheat, 

sugarbeet, soybean and maize. Considering the LiDAR point clouds cannot be directly used for 

estimation, some features needed to be extracted, such as canopy height (CH)(Harkel et al., 

2019; Jimenez-Berni et al., 2018; Walter et al., 2019), canopy volume (CV)(Jin et al., 2020; 

Verma et al., 2016) and canopy three-dimensional profile index (3DPI)(Jimenez-Berni et al., 

2018) derived from LiDAR returns.  

The regression analyses will be performed between LiDAR-derived features and field measured 

AGB and LAI. The research will answer the main question, “How accurately can we obtain the 

crop parameters LAI and AGB with features derived from LiDAR sensors with machine 

learning methods?”. In order to understand the overall performance, different factors in the 

prediction models were analyzed by asking the following questions: 

1. How does performance differ between the selected machine learning models? 

2. How does performance differ between AGB and LAI? 

3. How does performance differ between crop types?  

4. How does performance differ between UAV-LS and TLS LiDAR? 
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2. METHODS 

The research method consists of five parts that can be followed in Figure 1: Field Experiment, 

data acquisition, feature extraction, model training, and validation and accuracy assessment. 

The software and implementations used in this study can be seen in Table 1. 

Table 1. The software and implementations 

Software Package/Tools Usage 

LAStools1 201003   
Processing LAZ/LAS file, DEMs 
generation 

QGIS 3.16 GDAL, value tool Quality check of the pixels 

CloudCompare 
2.11.3 

  Visualization of LAZ file 

Rstudio  1.2.5033 caret, lidR, dplyr,raster 
Feature extraction, Modelling, 
Validation 

1- Both the tool itself and scripting by batch were used.  
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Figure 1. Flow chart of the process of estimating AGB and LAI. 
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2.1. Study Area 

The study site were located north of Wageningen and approximately 1.30 km away from the 

Wageningen University & Research (WUR) campus and belongs to Unifarm, the WUR 

experimental farm (Figure 2). 

 

Figure 2. Overview of fields within the study area and OpenStreetMap used as background 

map and the Google maps used as the inset map 

2.2. Field Experiment  

The total measured area was roughly 1600 𝑚2. Four types of crops were planted in the study 

area, which was wheat (Triticum aestivum L.), sugar beet (Beta vulgaris), soybean (Glycine 

max L.), and maize (Zea mays L.). The experimental design aimed at maximizing the differences 

of the crop development stages to enable parameter estimation over the crop life cycle. For this, 

each crop type was planted at two sowing dates to increase the variety of development at 

sampling events. Furthermore, harvest spots were distributed over four repetitions along the 

length of the field in order to use within-field variation to diversify development stages further. 

Finally, seven sampling events were spread over the growing season. Harvest plots were 
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marked with wooden/bamboo sticks and geo-located with Real-time kinematic-global 

navigation satellite systems (RTK-GNSS) to sub-centimetre accuracy. 

2.3. Data acquisition 

The LiDAR point clouds and field data were collected to create a regression relationship 

between features. The field experiment included both destructive and non-destructive 

measurements, with the non-destructive measurement typically performed 1-3 days prior to the 

destructive sampling events. 

2.3.1. Non-Destructive Measurements 

LiDAR data was acquired using a RIEGL RICOPTER with VUX-1UAV UAV-Laser scanner 

and a RIEGL VZ-400 Terrestrial Laser Scanner (Table 2). Sampling days were scheduled at 

regular intervals every two weeks when crop growth was judged sufficiently compared to the 

last sampling event, the weather allowed, and when pilots were available. Final, samplings were 

performed on the days that can be seen in Table 3. 

Table 2 VZ-400 and VUX R-1UAV main characteristics. (Brede et al., 2017) 

Characteristic VZ-400  VUX-1UAV  

Maximum Pulse Repition Rate (PRR) (kHz) 300 550 

Maximum effective measurement rate (kHz) 120 500 

Minimum|Maximum range (m) 1.5|350  3|920  

Accuracy|Precision (mm) 5|3 10|5 

Laser wavelength (nm) 1550 1550 

Beam divergence (mrad) 0.3 0.5 

Weight (kg)  9.6 3.75 

UAV flight planning was done in a way to maximize lateral overlap and efficiently use airtime. 

Ground Control Panels (GCP) were placed in the field to support flight line co-registration and 

co-registration with the TLS. Styrofoam GCPs of 120 cm x 60 cm were set up with the two 

panes forming a 90˚o angle between them (Brede et al., 2017). After flying the UAV-Laser 

scanner, TLS measurements were performed. Cylindrical retro-reflective targets were set up for 

later coarse co-registration of TLS scans (Brede et al., 2017). Five retro-reflective targets were 

registered with RTK-GNSS and scanned in a fine-scan mode in order to register the TLS point 

clouds in a global coordinate reference system, which was WGS84 UTM31N. Further scans 

were performed at each location that would be harvested after this sampling event. 
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Table 3 LiDAR data acquisition and related harvest number 

Flight Date Harvest 

13.05.2020 H1 

26.05.2020 H2 

10.06.2020 H3 

23.06.2020 H4 

15.07.2020 H5 

5.08.2020 H6 

1.09.2020 H7 

2.3.2. Destructive Measurements 

Harvesting was done 1-3 days after non-destructive measurements to collect ground truth data 

for all crops. All above-ground plant material was harvested and, per plot, put into bags. In an 

indoor laboratory, weighing the whole plot fresh mass was performed with precision scales, 

usually on the same day as the harvest. Then, two samples per bag were taken from the fresh 

mass and weighted.  

For the first sample, all leaves were separated from other organs and leaves were weighed 

separately. Then leaf area of these leaves was determined with a LiCOR Leaf Area Meter. The 

leaf area of the sample was scaled to the whole plot with the ratio of the sample weight to the 

whole plot weight.  

The whole second sample was dried at 105°C for 48h until all the water was vaporated, then 

re-weighted. The dry-to-fresh weight ratio was used together with the sample to whole plot 

fresh weight to scale dry weight for the whole plot. Dry weight is interpreted as AGB. Both leaf 

area and biomass are translated into density parameters by taking the plot surface area into 

account. 

The targeted sample number at plot level decreased from 944 to 909 due to operating errors 

such as mixing some bags during destructive sampling, incorrect measurement, or incorrect 

adhering of the bags' labels. Erroneous samples were excluded from the further calculation. 

Different plants were harvested at each destructive sampling event. The harvested plants and 

the summary of the acquired data can be seen in Table 4 where 𝐻𝑖 represents the number of 

harvest events. The calculation was performed at the plot level in the table, and raw plot data 

was used.  
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Table 4. An Overview of field-measured AGB and LAI by crops. 

  Above Ground Biomass, g   Leaf Area Index,  m2/m2 

Harvest min mean max  min mean max 

Wheat 

H1 151,4 938,5 1931,4  0,12 0,46 0,85 

H2 195,5 477,8 1199,7  0,64 0,99 1,75 

H3 307,9 956,9 1637,8  0,64 1,85 3,36 

H4 719,5 1298,9 2089,4  0,54 1,69 3,68 

Sugar beet 

H2 116,6 170,6 234,6  0,4 0,61 0,79 

H3 5,8 210,4 779,4  0,03 1,1 2,73 

H4 78 608,8 1683,5  0,34 1,53 3,66 

H5 388,4 1158 1989,6  1,65 3,785 5,996 

Soybean 

H3 1,1 5 13,7  0,007 0,02 0,04 

H4 41,1 102,2 273,4  0,21 0,36 0,64 

H5 467,6 755 1141,6  2,01 3,7 5,29 

H6 1979 2541 3059  4,67 5,99 7,64 

H7 1839 2545 3733  3,56 4,81 6,16 

Maize 

H4 5,1 22,3 55,3  0,02 0,09 0,24 

H5 18,7 159,9 424,8  0,06 0,66 1,72 

H6 114,3 511,9 976,2  0,36 1,85 3,37 

H7 357,5 861,7 1622  0,91 2,43 4,84 

2.3.3. Processing LiDAR Data 

Point clouds are large data sets composed of 3D point data derived from LiDAR laser scanners. 

The data derived from Riegl RiCOPTER was pre-processed to convert raw data into common 

format point cloud datasets. The required steps were followed according to Brede et al. (2017) 

can be seen in Figure 3.  
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Figure 3. Pre-processing steps of data by Riegl RiCOPTER.(Brede et al., 2017) 

2.4.  Feature Extraction 

2.4.1. Digital Elevation Models(DEMs) 

In this section, DEMs generation will be described to perform the extraction of the canopy 

height model (Wang et al.), canopy volume(CV) and canopy three-dimensional profile index 

(3DPI). To derive these features from laser data, an estimate of the ground elevation at each 

location (x, y) with a canopy hit was needed. This was accomplished by creating digital terrain 

models (DTMs) from ground hits and Digital Surface Models (DSMs) from top of the canopy 

hits (Magnussen et al., 2011). 

The generated raw point clouds cover a much larger area than the studied area. Therefore, the 

point cloud was clipped to the study area to reduce data size and thus increase processing speed 

for further operations using LAStools (LAStools, 2020). Both TLS and UAV-LS derived data 

were tiled with 20m tile and 2m buffer to avoid edge artefacts and interpolation errors while 

processing LiDAR in tiles (LAStools, 2020).  

To generate the digital elevation models (DEMs), we started with cleaning noise points. UAV-

LS derived point clouds did not have much noise, but TLS had dense noise points due to wind, 

rain, insects, or small particles in the air, reflections on water, and other effects(Tilly et al., 
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2014). Since the noise was almost at the same height as the maize plants, especially in the 7th 

harvest, they needed to be cleaned manually, looking at the perspective view at the point clouds 

using lasview tool.  

In the next step, LiDAR points were classified into ground and nonground points with the 

lasground tool of LAStool. A Triangular Irregular Network (TIN) filter was performed 

iteratively to dispose of the nonground points. The TIN filter detected the lowest point, which 

was most likely a terrain surface, and triangulate them to yield a TIN (Irwan Hariyono et al., 

2018). Then, we merged and converted the points to a raster with a 10cm x 10cm pixel 

resolution for calculating the DTM.  

In past years, it was suggested to use only the first returns to generate the interpolating surface 

for DSM generation at high resolution (Khosravipour et al., 2016). Using only the first returns 

causes to miss some of the LiDAR information and details, which are essential to UAV-LS 

derived data products.  We used a spike-free algorithm presented by  Khosravipour et al. (2016), 

which considers not only first returns but also second and third returns and systematically 

prevents the returns that could cause sudden spikes. The required freeze constraint number, 

which was 0.15 for this study, was calculated by three times the averaging the pulse spacing to 

apply the spike free algorithm (Khosravipour et al., 2016). Generating a DSM with the spike-

free algorithm was a very time consuming and challenging process with the available 

computational resources. Hence, 50% of the points are thinned and flagged and not considered. 

The thinned points were not included in the calculation to speed up the processing time. Finally, 

the points were merged and converted to a DSM raster with a 10cm x 10cm pixel resolution. 

TLS surveys usually consist of different scanning positions. Even though these positions are 

well determined, the possibility of shading effects, the fact that the impact angle is not wide 

enough, or the ground area cannot be entirely observed cause large triangulated artefacts on the 

DTM rasters (Crespo-Peremarch et al., 2020). As UAV-LS laser beams are almost vertical, 

these limitations are less prevalent than with TLS. Correspondingly, ground points could be 

measured better since there is not enough crop growth to cover the ground at the first 

measurement date (2020-05-13). DTM was calculared from the first flight of  UAV-LS and 

used in combination with DSMs of other harvests to derive CHM, CV and 3DPI. 
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2.4.2. Canopy Height Model 

Most of the published methodologies are based on the determination of canopy height, which 

is the difference between a digital surface model and a digital terrain model (Loudermilk et al., 

2009). This equation gives us the canopy height per plot (Magnussen et al., 1998). In this study, 

the canopy height was calculated pixel by pixel with a 10 cm x 10 cm pixel size. The pixels 

were extracted at the plot level and then aggregated by averaging to calculate each plot's mean 

canopy height. Since harvest and measurement were done for different crops in each destructive 

sampling, the canopy height obtained with LiDAR was filtered by harvest number.  

2.4.3. Canopy Volume 

LiDAR-derived plot volume was produced by multiplying the canopy height at pixel level with 

the 10cm x 10cm pixel size for each pixel in a plot. All calculated prism pixel volumes were 

extracted at the plot size and then aggregated by summing to calculate each plot's canopy 

volume. Filtering operation of canopy volume by harvest number was performed due to the 

different crops measured in each destructive sampling.  

2.4.4. Canopy 3D Profile Index 

Since LiDAR gives a 3D representation of the canopy, the 3D profile index was calculated as 

a third feature. The formula of the index is: 

3𝐷𝑃𝐼 =  ∑ (
𝑝𝑖

𝑝𝑡
 𝑒

𝑘
𝑃𝑐𝑠
𝑃𝑡 )𝑖=𝑛

𝑖=0   (1) 

where 𝑛 is the maximum number of vertical layers; pi is the number of points located in layer 

𝑖, 𝑝𝑡 is the total LiDAR points for all layers; 𝑝𝑐𝑠 is the cumulative sum of LiDAR points 

intercepted above a given layer 𝑖; 𝑘 is the exponential of the correction factor (Jimenez-Berni 

et al., 2018) 

3D profile index was applied to the ground classified LAZ file. The vertical layer thickness of 

each LAZ file formed by the point clouds used in this study ranges from 51 to 55.5m ellipsoid 

height. This layer must be sliced into vertically thinner layers to calculate the 3DPI index. The 

slice size was 0.1 m that should not be smaller than the expected co-registration error, which 

was approximately 0.05m for this study. The zero values were recognized as NA in 

programming R. To avoid this, all the NA’s were replaced with zero in each slice. The 

replacement does not cause any under or overestimate because zero is a neutral element in a 
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sum. Since there were approximately more than 4000-pixel zeros, aggregation was applied 

using the median, which was less sensitive to the outlier than the mean in the extraction section. 

The filtering operation was performed for 3DPI by harvest number as explained in previous 

canopy features.  

2.5.  Modelling  

AGB and LAI were estimated using Multiple linear regression (MLR), Support Vector Machine 

Regression (SVR) and Random Forest Regression (RFR). The estimation was performed at the 

plot level. During the field study, 909 samples were collected and calculated at the plot level 

for modelling. The models were trained and tested discretely to all collected samples and by 

filtering the samples based on the crop types. When all samples are filtered and grouped by 

crop types, 221 wheat, 224 sugar beets, 256 soybeans, 208 maize samples were procured. 

Before building the models, simple linear regression (LR) was applied to assess the relationship 

between LiDAR-derived features and response variables. 

The machine learning models used for estimation were trained using one of the resampling 

methods called leave-one-group-out (LOGO) cross-validation(CV) to avoid overestimation. All 

samples were randomly allocated prior to 70% training and 30% validation set. In LOGO 

method, the percentage of all training samples randomly divided into groups was specified as 

70% training and 30% test set during the process. Each time, 70% of all samples were used to 

fit the model, and the remaining 30% was used as the test set to estimate the best model for 

prediction.The best training model derived from LOGO CV process  was used to predict the 

response variables using the validation set. Field measured AGB and LAI were the response 

variable, and LiDAR-derived features CHM, CV, 3DPI were predictor variables. A cross-

validated modelling process was done repeatedly, and the number of repetitions was determined 

as 10. Tuning parameters required for random forest regression and support vector machines 

regression were adjusted using cross-validation implemented grid search parameter 

optimization.  
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Table 5. Machine Learning Models implemented in this study 

Model Strategy Method Tuning parameters 

LR Linear regression Simple Linear Regression   

MLR Linear regression Multiple linear regression – 

RFR Regression trees Random forest mtry 

SVR Non-linear regression Radial basis function SVR Sigma and C 

2.5.1. Multiple Linear Regression Model 

Multiple Linear Regression (MLR) is a parametric machine learning approach used to 

determine linear relationships between dependent and independent variables in cases where 

there is more than one predictor variable. MLR was selected due to its simple procedure and 

fitting potential. The MLR formulas are defined as: 

𝑌𝑖 =  𝛽0 + 𝛽1𝑋𝑖1 + ⋯ + 𝛽𝑘𝑋𝑖𝑘 +  𝜀𝑖  (2) 

where 𝑌𝑖  is the model response, the predicted variable, which are AGB and LAI in this case. 

𝛽0 is intercepted. 𝛽1, . . . , 𝛽𝑘  is called slopes or regression coefficients in statistics. 𝑋𝑖1  , . . . , 

𝑋𝑖𝑘   are predictor variables which are LiDAR extracted features CHM, CV, 3DPI from the 

previous section. 𝜀𝑖 is the residual error term that is assumed to be normally distributed with 0 

mean and constant variance (Ali et al., 2015; Civelekoglu et al., 2007). MLR was performed in 

R software caret package with cross-validation implemented.  

2.5.2. Random Forest Model 

Random forest (RF) is an ensemble learning model that can be applied to both regression and 

classification problems (Breiman, 2001). For regression, random forests are created with 

growing trees based on a random vector, with the tree predictor taking numerical values instead 

of class labels. The output values are numerical, and it is assumed that the training set is drawn 

independently of the distribution of the random Y, X vector (Breiman, 2001). The random forest 

model was chosen because it reduces bias, overfitting, and robustness to outliers and noise and 

gives good results with random samples in estimation-related studies(Breiman, 2001). 

A random forest algorithm was implemented using R and the “caret” package in this study. The 

model was trained and tested on both all samples and filtered samples by crops separately. The 

number of regression trees (𝑛𝑡𝑟𝑒𝑒) hyper-parameter was set to 100, and 𝑚𝑡𝑟𝑦 parameter, a 

randomly selected predictor number at each split, was tuned and assigned as 2 or 3.  
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2.5.3. Support Vector Regression  

Support vector machines (SVMs) are a non-parametric approach. They can be used for both 

classification and regression problems. The SVM algorithm creates a multidimensional 

hyperplane that separates the two classes by maximizing the margin between the two data sets. 

However, it is not always possible to separate the given dataset linearly (Zacarias et al., 2013). 

Support vector regression (SVR) converts the nonlinear regression problem into a linear 

problem using kernel functions to map the original data into a higher dimensional space 

(Cristianini et al., 2000). The radial basis kernel function (RBF) produces a robust result and a 

smaller number of input parameters. (Chen et al., 2011; Cristianini et al., 2000). RBF was 

chosen to fit the data. The regularization parameter (𝐶) of radial basis kernel shows how well 

the model can handle the error was tuned and set as 0.25. Sigma(𝜎) varied between 1 and 6.5 

as in all calculation. The SVR model was applied using R programming and the caret package. 

2.6. Accuracy Assesment 

The modelling application was performed on all samples of response field measured AGB and 

LAI and LiDAR-derived predictor variables CHM, CV and 3DPI separately to see how the 

performance differs between models and the response variables. To apply models on the four 

crops types, wheat, sugar beet, soybean and maize, we filtered the predictors by crop types. 

Estimation was done with the three machine learning methods, MLR, RFR, and SVR.  

Two statistical criteria were used as evaluation metrics, the coefficient of determination (R2) 

and Root Mean Square Error (RMSE), to determine how well the model predicts and the model 

performance on new data (Han et al., 2019). The comparison among the model performance 

will be the answer to the research questions mentioned in section 1. The formula of performance 

metrics are; 

𝑅2 = 1 −
∑ (𝑦𝑖

𝑁
𝑖=0 − �̂�𝑖)2

∑ (𝑦𝑖
𝑁
𝑖=0 − �̅�𝑖)2   (3) 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑦𝑖

𝑁
𝑖=0 −  �̂�𝑖)2  (4) 

where N is the total sample size, 𝑦𝑖 is the ith measured AGB and LAI the sample, �̂�𝑖 is the ith 

predicted value, and �̅�𝑖 is the 𝑖th mean measured value.  
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3. RESULTS 

The results obtained from the two sensors will be explained comparatively for the two 

parameters AGB and LAI and two LiDAR sensors. 

3.1. Relationship Between Predictor Variables and Response  

Linear regression was applied to see how the features extracted by LiDAR sensor data relate to 

AGB and LAI. The results shown in Table 6 represents the coefficient of determination (𝑅2) 

between LiDAR-derived CHM, CV, 3DPI and field-measured AGB and LAI. As shown in the 

table, over 70% of the variation in AGB/LAI was explained by the CHM and CV, both LiDAR 

extracted features and crop parameters. 3DPI and the AGB and LAI do not show a linear 

relationship seen in Figure 4. Therefore, the 𝑅2 of 3DPI ~ AGB and LAI is lower than the other 

features which are around 0.50. Additionally, TLS derived 3DPI showed a lower correlation 

with both AGB and LAI, where other features had a better result than UAV-LS.  

Table 6 The coefficient of determination (𝑅2) of the linear relationship between predictor 

variables and response 

  UAV-LS   TLS 

  AGB LAI   AGB LAI 

CHM 0.71 0.73   0.72 0.71 

CV 0.71 0.73   0.73 0.71 

3DPI 0.50 0.52   0.48 0.48 

 

Considering the canopy volume was calculated depending on the canopy height, the correlation 

ratios were expected to be the same. Only TLS derived CHM and CV were associated with 

AGB at a different rate of 𝑅2 ( 𝐶𝐻𝑀, 𝑅2 = 0.72, 𝐶𝑉 𝑅2 = 0.73)  

As shown in Figure 4, the slope of some dates causes deviations or clustering around the 

regression line. Since more than one crop is harvested and measured in each field measurement, 

their distribution may differ from each other. 
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Figure 4 The correlation between UAV-LS derived features and AGB and LAI, the colours represent the harvest date and the shapes indicate the crop types 
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3.2. Predictability Performance of AGB and LAI with all crop samples 

In this section, the result of the predictability performance of AGB and LAI with all crop 

samples will be presented. Then, the predictability performance of AGB and LAI with which 

sensor, and the final predictability performance of AGB and LAI with which model will be 

explained. The results can be seen in Table 7.  

Table 7. The Result of Predictability Performance of AGB and LAI with all crop samples 

Above Ground Biomass Leaf Area Index 

Model Parameter RMSE, g R-squared  Parameter RMSE, m2 R-squared  

UAV Laser Scanner 

MLR   342 0.80**   0.75** 0.81** 

RFR mtry=3 248 0.89** mtry=2 0.54** 0.90** 

SVR sigma = 3.55, C = 0.25 307 0.84** sigma = 3.46, C = 0.25 0.59** 0.88** 

Terrestrial Laser Scanner 

MLR   341 0.80**   0.84** 0.76** 

RFR mtry=3 276 0.87** mtry=2 0.66** 0.85** 

SVR sigma = 3.47, C = 0.25 299 0.85** sigma = 4.11, C = 0.25 0.64** 0.86** 

AGB and LAI were estimated using three machine learning models using all samples derived 

from field measured AGB and LAI and LiDAR features. The predictability performance of 

AGB with features obtained from two LiDAR sensors ranges from 0.80 to 0.89 𝑅2. The model 

with the best prediction performance applied with both UAV-LS and TLS features to estimate 

AGB was RFR (UAV-LS 𝑅2 = 0.89, 𝑅𝑀𝑆𝐸 = 248𝑔, TLS 𝑅2 = 0.87, 𝑅𝑀𝑆𝐸 = 276𝑔). SVR 

gave a very close result to RFR as well and outperformed MLR. Although the 𝑅2 values of 

MLR model applied with TLS features are very close to the MLR performed with UAV-LS 

features; the RMSE value is slightly lower. 

The overall predictability performance of LAI estimation has 𝑅2 ranges between 0.76 and 0.90 

at the plot scale. As shown in Table 7, the models applied with TLS features showed lower 

performance than UAV-LS. Among the models, MLR underperformed LAI prediction with a 

lower 𝑅2 and higher 𝑅𝑀𝑆𝐸 compared to the RFR and SVR. The best prediction performance 

was observed RFR (𝑅2 = 0.90, 𝑅𝑀𝑆𝐸 = 0.54𝑚2/𝑚2 ) with UAV-LS features and SVR 𝑅2 =

0.86, 𝑅𝑀𝑆𝐸 = 0.64𝑚2/𝑚2) with TLS derived features.   

According to the results, the prediction performed with the features obtained using the UAV-

LS gave a slightly better result than the TLS on the LAI estimation. In particular, the 𝑅2 value 

obtained for LAI estimated by TLS is considerably lower than the value obtained with UAV-

LS.. Considering the predictive performance of the machine learning models, overall, RFR and 
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SVR models that can work with both linear and nonlinear data have performed better than MLR. 

The models applied with the features derived from UAV-LS and TLS sensors also gave 

approximately similar results.  

Overall, the prediction models applied with all crop samples and LiDAR-derived features can 

estimate AGB and LAI with the 𝑅2 values that are above 70%. In order to see whether the 

ability of models to predict AGB and LAI is successful in crop specificity and to investigate 

whether data collection for one crop can help predict another, each crop sample filtered 

according to their harvest date and crop types. The predictability of AGB and LAI specific to 

crops and the predictive performance of models will be discussed in the next section. 

3.3. Predictability Performance of AGB and LAI by Crops 

The extracted features were filtered by crop types to apply the models separately. The 

Predictability Performance of AGB and LAI will be explained based on four crop types with 

different canopy properties wheat, sugar beet, soybean and maize. 

Wheat  

The results obtained from the wheat crop that can be seen in Table 8. According to wheat AGB 

estimation results differ considerably between models. The best result was obtained by RFR 

(𝑅2 = 0.83, 𝑅𝑀𝑆𝐸 = 193𝑔) applied with UAV-LS derived features and SVR (𝑅2 =

78, 𝑅𝑀𝑆𝐸 = 236𝑔) applied with TLS derived features. Important to realize that the AGB 

estimation results obtained with multiple linear regression (MLR) are considerably lower than 

other models for both sensors (UAV-LS  𝑅2 = 0.39, 𝑅𝑀𝑆𝐸 = 364𝑔, TLS 𝑅2 =

0.46, 𝑅𝑀𝑆𝐸 = 371𝑔). Due to the wheat crops being in early growth and were still tiny in H1 

and H2, the sensors could have measured objects at the same height or taller. Another reason 

for the high 𝑅𝑀𝑆𝐸 is that the planting dates of the plants are different. In wheat AGB values 

shown in Table 4; the difference between the minimum and maximum values in harvest number 

1 (H1) and 2 (H2) are relatively high. The crops planted at different times may form outlier. 

Since the linear models are not flexible to the outliers, it could cause a high 𝑅𝑀𝑆𝐸.  
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Table 8 Predictability Performance of Wheat AGB and LAI 

Wheat 

  Above Ground Biomass Leaf Area Index 

Model Parameter 
RMSE, 

g 
R-

squared  Parameter RMSE,  m2/m2 
R-

squared  

UAV Laser Scanner 

MLR   364 0.39**   0.41** 0.73** 

RFR mtry=2 193 0.83** mtry=2 0.38** 0.77** 

SVR sigma = 1.98, C = 0.25 204 0.80** sigma = 1.20, C = 0.25 0.29** 0.86** 

Terrestrial Laser Scanner 

MLR   371 0.46**   0.49** 0.46** 

RFR mtry=3 248 0.76** mtry=2 0.50** 0.61** 

SVR sigma = 1.42, C = 0.25 236 0.78** sigma = 2.28, C = 0.25 0.52** 0.58** 

𝑅2 results from wheat LAI estimation with three models range between 0.73 and 0.86 for UAV-

LS and 0.46 to 0.61 for TLS. SVR best performs the predictability performance of LAI with 

UAV-LS derived features (𝑅2 = 0.86, 𝑅𝑀𝑆𝐸 = 0.29𝑚2/𝑚2), RFR outperformed SVR and 

MLR with TLS features (𝑅2 = 0.61, 𝑅𝑀𝑆𝐸 = 0.50𝑚2/𝑚2). The prediction performed with 

the features derived from UAV-LS is reasonably higher than TLS features for LAI estimation.  

Sugarbeet 

Table 9 represents an overview of the sugar beet AGB and LAI prediction results. The 

coefficient of determination for estimating sugar beet AGB ranges between 0.54 to 0.76 with 

the features obtained from the two sensors. Based on the 𝑅2 and RMSE, the best AGB 

estimation was performed by applying MLR applied with UAV-LS data (𝑅2 = 0.60, 𝑅𝑀𝑆𝐸 =

341𝑔), SVR applied with TLS data (𝑅2 = 0.76, 𝑅𝑀𝑆𝐸 = 263𝑔). SVR showed the lowest 

result with UAV-LS data and best performance applied with TLS. 𝑅2 and 𝑅𝑀𝑆𝐸 values 

obtained from the models applied with TLS features are higher than those applied with UAV 

features.  

  



21 

 

Table 9 Predictability Performance of Sugar Beet AGB and LAI 

Sugar Beet 

  Above Ground Biomass Leaf Area Index 

Model Parameter 
RMSE, 

g 
R-

squared  Parameter RMSE,  m2/m2 
R-

squared  

UAV Laser Scanner 

MLR   341 0.60**   0.46** 0.91** 

RFR mtry=2 357 0.56** mtry=2 0.45** 0.91** 

SVR sigma = 2.30, C = 0.25 366 0.54** sigma = 2.05, C = 0.25 0.46** 0.91** 

Terrestrial Laser Scanner 

MLR   347 0.58**   0.55** 0.83** 

RFR mtry=2 287 0.71** mtry=3 0.49** 0.86** 

SVR sigma = 1.83, C = 0.25 263 0.76** sigma = 2.49, C = 0.25 0.53** 0.84** 

The results, as shown in the table, indicate that the predictability performance of LAI is better 

than AGB, where the 𝑅2 value is over 0.83, and 𝑅𝑀𝑆𝐸 is around 0.50 𝑚2/𝑚2. RFR showed 

the best estimation performance using the features derived from both UAV-LS and TLS. The 

MLR and SVR results associated with sugarbeet LAI estimation using UAV-LS derived 

features are seemed to be similar. Still, the decimals are somewhat different and can be seen in 

Figure 5. 

 

Figure 5 The MLR and SVR results with sugarbeet-LAI estimation using UAV-LS features 

Overall, the modelling with TLS derived features gives better results than UAV-LS on 

sugarbeet AGB estimation based on the 𝑅2 and 𝑅𝑀𝑆𝐸. Besides, the best LAI prediction was 

performed with the models applied using UAV-LS features.   

Soybean 

The results obtained from the soybean crop are shown in Table 10. The coefficient of 

determination for estimating soybean AGB ranges 0.86 and 0.91, with 𝑅𝑀𝑆𝐸 of 120g and 158g, 
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respectively. Looking at the AGB estimation results, the SVR model applied with UAV-LS 

data (𝑅2 = 0.93, 𝑅𝑀𝑆𝐸 = 96𝑔), and the RFR model applied with TLS data((𝑅2 =

0.90, 𝑅𝑀𝑆𝐸 = 125𝑔) showed better performance than other models with a high 𝑅2 and low 

𝑅𝑀𝑆𝐸. The best prediction performance was seen with the SVR model with a considerably low 

RMSE. 

Considering the overall LAI estimates, the models applied with TLS features performed hardly 

better than the UAV-LS features. MLR model applied with TLS data showed the best 

performance with a high 𝑅2 and relatively low 𝑅𝑀𝑆𝐸 (𝑅2 = 0.92, 𝑅𝑀𝑆𝐸 = 0.30 𝑚2/𝑚2). 

Likewise, among the models applied with UAV-LS, SVR model (𝑅2 = 0.92, 𝑅𝑀𝑆𝐸 =

0.34 𝑚2/𝑚2) outperformed the RFR and MLR.  

Table 10 Predictability Performance of Soybean AGB and LAI 

Soybean 

  Above Ground Biomass Leaf Area Index 

Model Parameter 
RMSE, 

g 
R-

squared  Parameter RMSE,  m2/m2 
R-

squared  

UAV Laser Scanner 

MLR   114 0.91**   0.36** 0.91** 

RFR mtry=3 108 0.92** mtry=3 0.38** 0.90** 

SVR sigma = 4.82, C = 0.25 96 0.93** sigma = 1.42, C = 0.25 0.34** 0.92** 

Terrestrial Laser Scanner 

MLR   130 0.89**   0.30** 0.92** 

RFR mtry=2 125 0.90** mtry = 2 0.32** 0.91** 

SVR sigma = 1.76, C = 0.25 138 0.88** sigma = 1.60, C = 0.25 0.31** 0.92** 

In summary, these results show that the models applied with UAV-LS derived features in AGB 

prediction and models performed with TLS derived features in LAI prediction showed better 

performance according to the 𝑅2 and the 𝑅𝑀𝑆𝐸.  

Maize  

As Table 11 shows, the predictability performance of maize AGB and LAI results of all models 

applied with the features obtained from the LiDAR sensors are very similar and consistent. 

Even though the 𝑅2 and RMSE values seem to be the same. The decimal parts differ from each 

other. According to the prediction performance of AGB, the models applied with TLS data 

performed better than models applied with UAV-LS features.  Among the models applied with 

both UAV-LS and TLS data, the RFR model outperformed the other models (UAV-LS 𝑅2 =

0.94, 𝑅𝑀𝑆𝐸 = 274𝑔, TLS 𝑅2 = 0.95, 𝑅𝑀𝑆𝐸 = 245𝑔). The SVR model also followed the 

RFR, outperforming the MLR model.  
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According to the LAI part of Table 11, the models applied using UAV-LS derived features 

outperform the TLS. Considering the results derived using UAV-LS features, MLR and RFR 

model showed somewhat similar performance based on the  𝑅2. However, it can be seen that 

MLR outperformed RFR model with a lower 𝑅𝑀𝑆𝐸 (𝑅2 = 0.94, 𝑅𝑀𝑆𝐸 = 0.56𝑚2/𝑚2).  

Among the models applied using TLS derived features on maize LAI estimation was observed 

with, the RFR model (TLS 𝑅2 = 0.94, 𝑅𝑀𝑆𝐸 = 0.60𝑚2/𝑚2).  

Table 11 Predictability Performance of Maize AGB and LAI 

Maize 

  Above Ground Biomass Leaf Area Index 

Model Parameter 
RMSE, 

g 
R-

squared  Parameter RMSE,  m2/m2 
R-

squared  

UAV Laser Scanner 

MLR   294 0.93**   0.56** 0.94** 

RFR mtry=2 274 0.94** mtry=2 0.58** 0.94** 

SVR sigma = 5.30, C = 0.25 275 0.94** sigma = 5.46, C = 0.25 0.62** 0.93** 

Terrestrial Laser Scanner 

MLR   267 0.94**   0.65** 0.93** 

RFR mtry=2 245 0.95** mtry = 2 0.59** 0.94** 

SVR sigma = 4.96, C = 0.25 258 0.95** sigma = 4.05, C = 0.25 0.69** 0.91** 

Based on the information obtained from the predictability performance of maize AGB and LAI 

results, all models perform almost identical.  

4. DISCUSSION  

The LiDAR has been demonstrated for the non-destructive phenotyping of AGB and LAI in an 

increasing number of studies (Deery et al., 2020; Eitel et al., 2016; Harkel et al., 2019; Jimenez-

Berni et al., 2018; Li et al., 2015; Walter et al., 2019). In the context of the study, the crop 

parameters LAI and AGB were estimated using UAV-LS and TLS derived features with the 

machine learning methods MLR, RFR and SVR over four crops: wheat, sugar beet, soybean, 

and maize. 

The models applied with all crop samples, UAV-LS and TLS derived features, produced very 

similar results in AGB prediction. Tilly et al. (2014) demonstrated the sufficiency of TLS (Riegl 

VZ-1000) for AGB estimation. However, Brede et al. (2017) have stated that although the 

UAV-LS’s perspective is vertical, it still reaches the ground level at similar rates as the TLS 

for all returns. This may have caused the UAV-LS to perform as well as TLS in AGB 

estimation. In the LAI estimation, UAV-LS performed better than TLS. Wang et al. (2020) and 

Tang et al. (2014)studied several LiDAR sensors to estimate LAI and pointed out that field-
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measured LAI estimates showed the best agreement with UAV-LS derived data at the plot scale. 

Although the multi-return and side-looking capabilities of the TLS (Brede et al., 2017) ensured 

as advantageous to detect all part of crops, the fact that the UAV-LS can provide vertical 

structural information of vegetation (Wang et al., 2017) may have enabled crop leaves and top 

to be measured more clearly.  

The machine learning models differed in the prediction of AGB with all samples and crop-

specific modelling. While nonlinear models RFR and SVR performed better in modelling with 

all crop samples modelling, linear model MLR came to the fore in crop-specific calculations. 

As shown in Figure 4 The correlation between UAV-LS derived features and AGB and LAI, 

the colours represent the harvest date and the shapes indicate the crop types, the slope of some 

dates causes deviations around the main regression line due to more than one crop was 

measured in each field measurement. As stated before, their distribution may differ from each 

other. Each crop can show a linear correlation within itself. However, according to Table 7, all 

crops AGB and LAI show a 0.80 𝑅2 linear correlation with the LiDAR derived features. RFR 

and SVR performed quite comparably to each other. Both models can give powerful results 

with both linear and nonlinear data. In modelling with all samples, RFR yielded better than 

SVR and MLR.  

In the study specific to crops, the results of the models applied with the features derived from 

UAV-LS and TLS results may differ between crop samples. Looking at the wheat crop AGB 

and LAI estimation, although there are minor differences between models in the estimation of 

both AGB and LAI of the wheat crop, it has been observed that UAV-LS data give slightly 

better results than TLS.  

In Sugarbeet AGB estimation, TLS data have a higher 𝑅2 values and lower 𝑅𝑀𝑆𝐸, while the 

model results applied with UAV-LS data stand out in LAI estimation.  

It can be said that the  𝑅2 and 𝑅𝑀𝑆𝐸 values obtained from the model applied with UAV-LS 

data in soybeans gave better results than TLS, but both sensors gave robust results for LAI, and 

no comparison could be made. 

The models applied with TLS data performed slightly better in the maize AGB prediction. The 

𝑅2 values in the LAI estimation were very similar in the two sensors, but due to the 𝑅𝑀𝑆𝐸 

values derived from TLS data models were higher than UAV-LS, it can be said that the models 

applied with UAV-LS outperformed TLS.   
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When the model performances are evaluated, even if the crops show a linear relationship, 

MLR's being more sensitive to outliers has sometimes caused it to lag behind RFR for some of 

the crops.  Wheat and maize AGB estimation were performed the with RFR model better than 

SVR and MLR. In this study, regression models were applied using active sensor LiDAR-

derived features. In another study applied with passive optical sensors, Wang et al. (2016) 

estimated the wheat biomass using appropriate spectral vegetation indices. They indicated that 

the RFR model produced more accurate estimates of wheat biomass with 𝑅2 = 0.79 than the 

SVR and ANN models. Moreover, Han et al. (2019) conducted a similar study with maize crop 

and estimated the maize-AGB using optical UAV remote-sensing data with machine learning 

methods RFR, MLR and ANN. The limitation of optical UAV causes the uncertainties 

associated with observation angle, illumination conditions, canopy structure, and leaf 

morphology characteristics estimating the AGB. Additionally, among the statistical models, 

they applied, due to the data derived by optical UAV and field measured showed a nonlinear 

relationship, RFR( 𝑅2 = 0.699)performed better than the ANN  ( 𝑅2 = 0.691) on the test set 

and outperformed MLR.  

In the sugarbeet AGB estimation, MLR showed high 𝑅2 and low RMSE with the UAV-LS 

features where SVR outperformed the MLR and RFR with TLS features. Harkel et al. (2019) 

estimated sugarbeet biomass by applying the linear regression model using UAV-Based 

LiDAR-derived 3DPI and reported the 𝑅2 of 0.68 which was close to this study’s result. 

Additionally, soybean AGB estimation was performed with the SVR model and outperformed 

MLR and RFR. In this study, one 1D and two 3D features extracted from LiDAR point clouds, 

which can provide accurate 3D information of plant shapes and canopy structures (Omasa et 

al., 2006), were used and overall, an 𝑅2 value over 0.88 was obtained from all applied models. 

Similarly, Maimaitijiang et al. (2019) estimated soybean AGB using unmanned aerial systems 

derived photogrammetric point clouds applying the regression models with linear performance 

and indicated that 3D metrics provide better estimates of AGB than 2D structural metrics with 

the 𝑅2 of 0.849. Based on these results, it can be said that using the 3D features derived from 

LiDAR point clouds can provide satisfactory accuracy in AGB prediction.  

Considering the general results of AGB estimations, except for the model applied with sugar 

beet data, over 70% 𝑅2 and approximately 250g RMSEs were observed from all other 

models, both with all samples and crop-specific model.  
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Looking at the LAI estimation, the models that applied UAV-LS data performed pretty much 

better than TLS overall in calculations. Tang et al. (2014) studied several LiDAR sensors to 

estimate LAI and pointed out that field-measured LAI estimates showed the best agreement 

with UAV-LS derived data. Multiple flights and viewing perspectives (Brede et al., 2017) 

from the top of the crops are advantageous for UAV-LS for multiscale LAI estimation(Wang 

et al., 2020) against TLS. It was observed that the RMSE values of the models applied with 

TLS data were higher than UAV-LS, even if the 𝑅2 values of the models applied with all crop 

samples using UAV-LS and TLS features were very similar to predict LAI. In the machine 

learning models for LAI estimation, the nonlinear model performed considerably better than 

the linear model with applied all samples. According to the 𝑅2 and 𝑅𝑀𝑆𝐸 while the best LAI 

estimation was performed with the RFR model with the UAV-LS features, the SVR model 

achieved the best performance with TLS derived features.  

In the crop-specific modelling analyses, according to the 𝑅2 and 𝑅𝑀𝑆𝐸 values, except soybean 

crop, LAI estimates performed with the models using UAV-LS features outperformed the 

estimation made with TLS. 𝑅2values in soybeans are almost the same for two sensors. It can 

be said by looking at RMSE values that LAI estimation made with TLS features shows better 

performance than UAV-LS. 

Herewith, it can be said that LAI can be estimated by statistical methods using both UAV-LS 

and TLS derived data. Similarly to this study, Hosseini et al. (2015) used airborne radar remote 

sensing to estimate LAI for maize and soybean with active remote sensing data. He stated that 

depending on the radar band; LAI could be estimated successfully (C-band, maize 𝑅2 = 0.688 

HH–HV and e 𝑅2 = 0,656 VV–HV, soybean 𝑅2 = 0,64 for both HH–HV and VV–HV).  LAI 

can also and often be predicted using passive sensors with physical and statistical methods. In 

statistical LAI estimations made using the optical remote sensing method, the statistical 

relationships between vegetation indices (VIs) and LAI are explored to estimate LAI (Potithep 

et al., 2013; Turner et al., 1999; Wang et al., 2005). For instance, Li et al. (2016) evaluated the 

RFR method for predicting grassland LAI using ground measurements and Landsat images. 

They demonstrated that if a good choice can be made between vegetation indices derived from 

optical remote sensing data, LAI can be predicted strongly with the RFR model. In another 

study of Gupta et al. (2006) in wheat and chickpea LAI estimation using Landsat images, the 

relationship between hyperspectral vegetation indices and LAI was observed for wheat (𝑅2 in 

0.86–0.97 range) and for chickpea (𝑅2 in 0.85–0.88 range). Based on the result, wheat LAI 
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estimation can be done more successfully with Landsat images than LiDAR point clouds 

derived features.  

In addition to all of this, as stated before, the study was carried out with the data collected from 

all crop samples to see the model performance, and robust results were obtained for both 

parameter estimation. Crop-specific estimations were also conducted to investigate whether 

collecting data for one crop could help predict another and to see if the ability of models to 

predict AGB and LAI was successful in crop specificity. Results show that AGB estimation 

also yielded very good 𝑅2 values from soybean and maize and even wheat, but sugar beet results 

were lower than other crops. Likewise, in the LAI estimation, soybean, maize, and sugar beet 

had good results, while wheat showed lower 𝑅2 values than other crops. Based on this, it can 

be said that the parameter estimation performed with samples collected from a crop cannot be 

used to predict another crop parameter for this study. The reason for the high 𝑅2 and low 𝑅𝑀𝑆𝐸 

obtained from the models applied with all samples is due to the fact that some crop samples 

give remarkable estimation results. 

5. CONCLUSIONS and RECOMMENDATIONS  

In this context, the crop parameters LAI and AGB estimated using UAV-LS and TLS derived 

features CHM, CV and 3DPI with machine learning methods over four crop types with different 

canopy properties; wheat, sugarbeet, soybean and maize. Finally, the research questions 

mentioned in the introduction section can be answered. 

“How accurately can we obtain the crop parameters LAI and AGB with features derived from 

LiDAR sensors with machine learning methods?” 

In models with the features obtained from LiDAR data, according to 𝑅2 and 𝑅𝑀𝑆𝐸 values of 

AGB and LAI estimation results obtained from the study with all crop samples were entirely 

satisfactory. The predictability of AGB was over 0.80 𝑅2, and the predictability of LAI was 

above 0.76 𝑅2. However, in crop-specific regression models of the Wheat LAI estimation and 

sugarbeet, AGB estimation failed, 𝑅2 was below 0.70. 

1. How does performance differ between the selected machine learning models? 

In the study performed with all crop samples, it was observed that RFR performed better 

than SVR and MLR and SVR performed relatively better than MLR based on the 𝑅2 and 

𝑅𝑀𝑆𝐸. RFR and SVR gave very similar results to each other with some crops. In the crops 
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specific study, the performances of the models in AGB and LAI predictions differ. A 

generalization cannot be made. In conclusion, it can be said that the models RFR and SVR 

can handle both linear and non-linearly correlated datasets perform better than the linear 

model MLR.  

2. How does performance differ between AGB and LAI? 

In the models performed with all crop samples’ field measured and LiDAR-derived 

features, the possibility emerged that AGB and LAI could be predicted at a satisfactory rate.  

R2 results higher than 0.80 for AGB estimation, 0.76 for LAI were obtained in models 

applied with all samples. Both parameters could be predicted quite well with all samples. 

However, a generalization cannot be made for crop-specific modelling.  

3. How does performance differ between crop types?  

In crop-specific calculations, the Wheat AGB prediction was quite successful, when the 

LAI prediction failed based on the 𝑅2 and 𝑅𝑀𝑆𝐸 values. While the predictability 

performance of both crop parameters in soybean and maize was above 0.80 𝑅2, the 𝑅2 

values obtained from the AGB estimation in sugar beet were between 0.54 and 0.76. 

4. How does performance differ between UAV-LS and TLS LiDAR? 

The models applied with the features obtained from UAV-LS  and TLS gave similar  results 

when made with all crop samples. However, according to the analysis results made specific 

to the crops, the models applied with the features obtained from UAV-LS showed a 

powerful performance in all LAI estimates. Although the results obtained from models 

applied using TLS and UAV-LS features to estimate AGB were very close, only sugarbeet 

AGB estimation gave better results with TLS data than UAV-LS.   

In this thesis, AGB and LAI were estimated using statistical methods with LiDAR extracted 

features CHM, CV and 3DP over four crop types. More LiDAR features can be extracted in 

future studies, and it can be investigated which and how the features affects the crop parameter 

estimation. Unlike other remote sensing sensors, 3D profile of an object can be generated from 

the LiDAR sensor. The features can be selected in this direction. As a second recommendation, 

generating DEMs from LiDAR data is both time-consuming and needs more computational 
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power. The targeted working time should be planned considering the processing time of LiDAR 

data.  
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Annex 1 UAV-LS derived Canopy Features Histogram 
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Annex 2 Correlation Between AGB and UAV-LS derived features 
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Annex 3 Correlation Between LAI and UAV-LS derived features 
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Annex 4 UAV-LS - Predicted and Observed values of AGB with all samples 
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Annex 5 UAV-LS - Predicted and Observed values of LAI with all samples 
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Annex 6 UAV-LS - Predicted and Observed values of Wheat AGB 
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Annex 7 UAV-LS - Predicted and Observed values of Wheat LAI 
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Annex 8 UAV-LS - Predicted and Observed values of Sugarbeet AGB 
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Annex 9 UAV-LS - Predicted and Observed values of Sugarbeet LAI 
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Annex 10 UAV-LS - Predicted and Observed values of Soybean AGB  
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Annex 11 UAV-LS - Predicted and Observed values of Soybean LAI 
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Annex 12 UAV-LS - Predicted and Observed values of Maize AGB 
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Annex 13 UAV-LS - Predicted and Observed values of Maize LAI 
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Annex 14 TLS derived Canopy Features Histogram 
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Annex 15 Correlation Between AGB and TLS derived features 
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Annex 16 Correlation Between LAI and TLS derived features 

 

 



49 

 

 

Annex 17 TLS-Predicted and Observed values of AGB with all samples 
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Annex 18 TLS-Predicted and Observed values of LAI with all samples 
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Annex 19 TLS-Predicted and Observed values of Wheat AGB 
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Annex 20 TLS-Predicted and Observed values of Wheat LAI 
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Annex 21 TLS-Predicted and Observed values of Sugarbeet AGB 



54 

 

 

Annex 22 TLS-Predicted and Observed values of Sugarbeet LAI 
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Annex 23 TLS-Predicted and Observed values of Soybean AGB 
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Annex 24 TLS-Predicted and Observed values of Soybean LAI 
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Annex 25 TLS-Predicted and Observed values of Maize AGB 
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Annex 26 TLS-Predicted and Observed values of Maize LAI 


