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Abstract 
 

Crop classification via remote sensing provides important information for agricultural 

management. The availability of high-resolution images from unmanned aerial vehicle (UAV) offers 

new opportunities for crop classification. To analyze UAV imagery, crop classification based on 

object-based image analysis (OBIA) has been increasingly reported. Hence, the purpose of this study 

is to develop an OBIA approach to classify pumpkin and pumpkin flower in the heterogeneous 

agricultural field using UAV imagery. The approach proposed can be divided into two steps: (1) 

image segmentation using the Large Scale Mean-Shift (LSMS)  algorithm, and (2) a classification of 

pumpkin and pumpkin flower by Random Forest (RF) classifier. A wide range of features, including 

the spectral features, textural features based on the grey-level co-occurrence matrix (GLCM), and 

geometric features were extracted for classification, and their contribution was evaluated with the 

RF variable importance measure. The results have demonstrated that the proposed object-based 

crop classification approach achieved a satisfactory overall accuracy of 0.94. The classification map 

provides a spatial distribution of pumpkin and pumpkin flower that can be used to guide farmers for 

agricultural management and economic purposes.  
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1. Introduction 

 

1.1. Context and background 

With the rapidly growing world population, food production needs to increase globally (FAO, 

2017). This will require higher agricultural yields to meet the projected consumption demands (Foley 

et al., 2011). However, climate change combined with population and environmental pressures has 

already been hampering agricultural productivity (Waldner et al., 2015). Therefore, urgent attention 

must be paid to the development and sustainable management of agricultural practices to keep 

pace with increasing production needs (Belgiu and Csillik, 2018).  

Crop mapping has become essential to effectively analyze and monitor agricultural activities 

and to support sustainable agricultural management (Ghazaryan et al., 2018). Accurate crop maps 

provide valuable information for various applications such as crop monitoring (Guan et al., 2016), 

yield prediction (Battude et al., 2016), and water resources management (Toureiro et al., 2017). 

Moreover, these crop maps are essential resources for improving decision-making processes for all 

stakeholders within the agricultural production chain (Liu and Bo, 2015).  

Pumpkin is nowadays in peak demand with rising popularity and acreage all over the world 

(Kulczynski and Gramza-Michałowska, 2019; Wittstruck et al., 2021). Pumpkin farmers are exploring 

ways for accurate assessment of pumpkin crops to increase yield (El-Hamed and Elwan, 2011). In 

order to help pumpkin growers, detailed pre-harvest information about pumpkin is of great interest 

(Wittstruck et al., 2021). In this regard, reliable information on pumpkin derived from crop maps 

could offer a significant contribution to decision-makers in proper planning for management, 

statistical and economical purposes.  

Analysis of remotely-sensed imagery provides a wide range of opportunities to address the 

topic of crop mapping using classification techniques (Al-Ali et al., 2020). The spatial resolution of 

remote sensing images is one of the most important elements for crop classification (Kwak and Park, 

2019). The new generation of remote sensing platforms known as unmanned aerial vehicles (UAV) 

has attracted great attention in recent years due to the high spatial resolution of the sensors (Weiss 

et al., 2020). Compared to satellite or airborne data acquisitions, UAV are less expensive to use and a 

more flexible operation regarding flight planning and weather conditions (Böhler et al., 2018; Shi et 

al., 2016). The utilization of the UAV equipped with a digital camera is a powerful and cost-effective 

approach to acquire ground information in a fast and easy way (Yang et al., 2017). UAV images with 

very high spatial resolution improve the discrimination of various surface objects, thereby allowing 

to produce accurate crop maps (Kwak and Park, 2019).   
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Over the last decades, (geographic) object-based image analysis (GEOBIA or OBIA) has 

emerged as a new paradigm for analyzing very high spatial resolution imagery (Blaschke et al., 2014; 

Chen et al., 2018). It defines and examines objects extracted from homogeneous and contiguous 

pixels, which reduces intra-class spectral variability (Torres-Sánchez et al., 2015). Therefore, OBIA 

has proved an important approach to the use of UAV data in crop classification (Ma et al., 2017a).  

 

1.2. Problem definition 

The use of the UAV platform has made a big leap in terms of spatial resolution. With the 

increase in spatial resolution, single pixels no longer represent the full spatial dimension and 

properties of the targeted class in the image, referred to as the H-resolution case (Blaschke et al., 

2014). For this reason, traditional pixel-based image classification may lead to poor results with such 

high spatial resolution because it analyzes individual pixels using only spectral information and does 

not take into account neighboring pixels (Liu and Bo, 2015). As a consequence, the classification 

results show a salt-and-pepper effect, and classification accuracy is reduced with traditional pixel-

based image analysis with high spatial resolution images (Yu et al., 2006).  

The OBIA approach is a good alternative to address the salt-and-pepper effect and H-

resolution case. It first identifies homogeneous groups of neighboring pixels into meaningful image 

objects following a segmentation process and then uses those image objects as the basic elements 

for the classification (Blaschke, 2010). The OBIA method extracts not only spectral information of the 

pixels but also semantic properties of each object such as spatial, textural, and contextual 

information (Blaschke et al., 2014; Teodoro and Araujo, 2016). This makes OBIA more appropriate 

than pixel-based image classification in many applications, especially when using high spatial 

resolution data (Im et al., 2014). 

Although object-based image classification has become popular in the remote sensing 

community over the last decades, there are potential limitations that need further exploration (Im et 

al., 2014). OBIA usually consists of two main phases, namely, image segmentation and feature 

extraction and classification. Within this framework, the object-based approach has its own 

limitations regarding these two aspects (Liu and Xia, 2010). Determining an optimal segmentation 

scale is often a challenging and crucial process commonly applied in OBIA because the resulting 

accuracy is directly depending on the segmentation scale (Blaschke et al., 2014). On the other hand, 

it is important to select the relevant features to classify the image objects in the scene for the 

classification result to be successful (Chen et al., 2018). Therefore, our research is performed at 
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multiple segmentation scales to find the optimal parameters, taking into consideration appropriate 

features for identifying pumpkin and pumpkin flower. 

The pumpkin plant is probably the most diverse vegetable in terms of characteristics such as 

size, shape, and color (Kulczynski and Gramza-Michałowska, 2019). It is generally cultivated in large-

scale farming areas. In that case, it is difficult to observe flowering and pumpkin crops before 

harvest time in large-scale heterogeneous farming areas. These issues have created challenges for 

pumpkin farmers to monitor pumpkin crop development and make management decisions. Hence, 

the identification of pumpkin and pumpkin flower is critical agronomic traits that provide beneficial 

information to helping farmers make optimal decisions for management and economic purposes. 

Current studies have pointed out the capability of object-based analysis of UAV imagery to 

identify crop types, including rice (Kawamura et al., 2020), potato (Siebring et al., 2019), vegetation 

mapping (Oldeland et al., 2021), and almond tree flowering (López-Granados et al., 2019). Although 

crop classification methods based on OBIA is increasingly being reported, these methods have not 

been adequately tested for the detection of pumpkin and pumpkin flower using UAV data. 

Therefore, this thesis seeks to explore the behavior of the object-based image classification 

approach using high spatial resolution UAV images for pumpkin and pumpkin flower identification. 

 

1.3. Research objectives and questions 

The main objective of this thesis is to develop an object-based image analysis approach that 

detects pumpkin and pumpkin flower using UAV images. This approach will investigate appropriate 

segmentation parameters and features in order to accurately map the pumpkin and pumpkin flower. 

The open source software is used for image segmentation and classification to facilitate the cost-

effectiveness of the research and the use of the methodology. This development will contribute to 

the potential of object-based analysis using UAV in the field of crop mapping. 

This objective will be addressed with the following three research questions: 

1. What are the suitable parameters to use for the selected segmentation algorithm? 

2. Which derived features contribute to the classification of objects? 

3. How accurate is the classification of the objects?  
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1.4. Outline 

This thesis is organized into six chapters. In chapter 1, the general background and 

motivation of the research are introduced, followed by the research problem, research objectives, 

and research questions. The next chapter (2) provides a theoretical background to understand the 

concept of the thesis research. Chapter 3 describes the materials and methods used in this work to 

answer the research questions. Chapter 4 presents the results of the segmentation and classification 

process, while chapter 5 discusses the results by interpreting obtained results and comparing them 

to other similar studies. Lastly, Chapter 6 presents the conclusions, giving an overview of the results 

found in this thesis. 
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2. Related studies 

 

2.1. Pumpkin crop 

Pumpkin is an annual creeper plant belonging to the Cucurbitaceae plant family (Kulczynski 

and Gramza-Michałowska, 2019). It is a valuable vegetable crop with high productivity, high nutritive 

value, and good storability (El-Hamed and Elwan, 2011). The phenological period of a pumpkin crop 

varies between 90 to 100 days. The pumpkin growing cycle mainly consists of germination, early 

growth,  flower development, and mature fruiting, shown in Figure 1. The growth cycle starts from 

seeds, and flowers develop as the plant grows and matures. Following pollination and fertilization, 

pumpkin fruits containing seeds develop and allow the life cycle to begin again. Hence, pumpkin 

seedlings consist of three main parts; green plant, flower, and fruit. Spectral reflectance of a 

pumpkin field may be affected by these three parts during the growing period.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Diagram of the pumpkin life cycle. 
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While growing, vegetation covers the field first, and the canopy looks green. That is why 

spectral reflections look similar because all plant parts are in green color. Pumpkin flowers start to 

bloom 8 to 10 weeks after planting. The flowers are large and bright yellow. Following pollination, 

pumpkin fruits begin to emerge at the bottom of the flower. Pumpkins turn color from green to 

orange and/or deep orange during the ripening.  

Figure 2 demonstrates the spectral signatures of pumpkin, pumpkin flower, and leaves 

during fruit development from the image acquired from UAV equipped with a Red-Green-Blue (RGB) 

camera. The separability between pumpkin, pumpkin flower, and leaves is more pronounced 

between the Green (500-600 nm wavelength) and Red (600-700 nm wavelength) spectral regions. 

The pumpkin and pumpkin flower also indicate different spectral reflectance values in the Green 

band. However, they both show a similar spectral response, meaning that the high values in the Red 

band (600-700 nm wavelength) and low values in the Blue band (450-500 nm wavelength). Besides 

spectral reflectance, considering spatial and textural properties could provide more information to 

distinguish pumpkin and pumpkin flower from each other. Since pumpkin and pumpkin flower are 

different in size and shape, these properties could be used in order to improve pumpkin and 

pumpkin flower detection. 

 

 

2.2. Image segmentation 

Image segmentation is an initial and crucial process to produce the fundamental units of 

OBIA (Cheng and Han, 2016). The goal of image segmentation is to divide an image into a series of 

discrete regions, so-called segments or image objects that differ based on certain characteristics 

such as texture, color, shape, and size (Hossain and Chen, 2019). These regions represent real-world 

objects on the ground, corresponding to image objects in OBIA (Cheng and Han, 2016). 

Figure 2. Spectral response of the pumpkin, pumpkin flower and leaves extracted from RGB image. 
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Segmentation algorithms commonly used for remote sensing are divided into point-based or 

threshold-based, edge-based, and region-based (Hossain and Chen, 2019; Kotaridis and Lazaridou, 

2021; Pal and Pal, 1993). Region-based algorithms have been widely applied for segmenting 

remotely sensed imagery (Wang et al., 2010). Region-based algorithms try to explore the objects by 

growing or merging and splitting techniques based on the definition of homogeneity criteria 

(Blaschke et al., 2004). The advantage of the region-based methods is that segments are provided to 

be homogeneous spatially and/or spectrally (Wang et al., 2010). 

The mean-shift algorithm is a non-parametric region merging segmentation approach that 

demonstrated promising results for image segmentation studies, and hence they have received the 

attention from remote sensing community (Huang et al., 2019; Kotaridis and Lazaridou, 2021). The 

Large Scale Mean-Shift (LSMS) segmentation algorithm is also a non-parametric and iterative 

clustering mean-shift algorithm provided by the Orfeo Toolbox (OTB) (Michel et al., 2015). It makes a 

group of pixels with similar meanings using the radiometric variance and mean of each band (Duarte 

et al., 2020; Michel et al., 2015). LSMS segmentation is notable as it allows for the optimal use of the 

memory and processors, and provides an open-source for remote sensing imagery processing, 

especially developed to be applied in large high-resolution images (De Luca et al., 2019; Duarte et 

al., 2020). 

Little research has been carried out using LSMS segmentation using UAV images so far, but 

the results were promising. Duarte et al. (2020) investigated the capability of UAV imagery for 

detection of Eucalyptus Longhorned Borers damages in eucalyptus stands by using the LSMS 

segmentation algorithm. Their results showed the highest accuracy of all the models tested with 

98.5% overall accuracy and 0.94 kappa value. A study by De Luca et al. (2019) focused on the 

reliability of the LSMS segmentation algorithm to classify cork oak woodland using UAV imagery. The 

supervised classifiers applied achieved a high accuracy level with overall accuracy values above 89% 

and kappa coefficient values of at least 0.847. There are other studies dedicating that good 

classification performance was achieved by LSMS segmentation, such as disease classification of 

potato plants (Siebring et al., 2019) and mapping the distribution of grass species (Oldeland et al., 

2021).  

 

2.3. Object-based classification 

A variety of classification algorithms have been developed and implemented for remote 

sensing image classification. Among these algorithms available, machine learning techniques are 

widely utilized in order to generate reliable classification results (Ma et al., 2017b). A number of 
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investigations have explored the machine learning algorithms in terms of the accuracy of the 

classification results. The random forest (RF) classifier based on an ensemble learning technique has 

been proven to yield a relatively powerful technique compared to other classifiers (Belgiu and Drăgu, 

2016; Song et al., 2017). Furthermore, Ma et al. (2017b) have documented a meta-analysis of the 

development and application of supervised object-based land-cover image classification, including 

various factors. They reported that RF is more efficient than other classifiers in object-based image 

classification. 

RF offers several advantages in its application to remote sensing studies. It is a non-

parametric method and therefore makes no distributional assumptions on the predictor nor 

response variables (Breiman, 2001). It is able to handle situations where the number of predictor 

variables exceeds the number of observations (Cutler et al., 2007). It is better adapted for a large 

volume of data and variables, and it can measure degrees of variable importance (Rodriguez-Galiano 

et al., 2012).  These make RF algorithm a suitable classifier to perform object-based classification 

with a limited amount of training data and a high amount of object features.  

To take advantage of the OBIA approach, object features need to be defined and calculated 

to use as predictor variables in the RF classification process. Besides spectral reflectance, vegetation 

indices, color space transformations, texture measures, and geometric features are also employed 

since they have been shown to be useful for object-based classification. A study by Feng et al. (2015) 

was presented a method combining RF and texture analysis for vegetation mapping in 

heterogeneous urban landscapes based on UAV data. Experimental results showed that overall 

accuracy for Image-A and Image-B increased from 73.5% to 90.6% and 76.6% to 86.2%, respectively, 

after the inclusion of texture features. The inclusion of texture features indicated that texture could 

greatly improve classification accuracy.  

Next to texture features, color and VIs are important components humans use to recognize 

objects. For instance, Kawamura et al. (2020) evaluated different combinations of input features: 

three color spaces, canopy height model, texture, and four vegetation indices for discriminating 

crops/weeds in upland rice fields using UAV images with RF classifier. The results suggest that the 

classification accuracy was improved by combining hue-saturation-value color space with texture 

and spectral features. In general, the classification method of integrating spectral information with 

other types of features is accurate than methods that use only spectral information according to 

previous studies (Lee et al., 2020; Lou et al., 2020; Yu et al., 2006).   
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3. Materials and Methods 

 

3.1. Overview 

The proposed object-based image classification approach mainly consists of three steps, 

including (1) an image segmentation algorithm and quality assessment; (2) feature extraction of 

image objects; and (3) image classification based on the segmented objects. The methodology is 

summarized in Figure 3. 

Figure 3. Schematic overview of the proposed methodology. 
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3.2. Study area 

The study area is located within a strip cropping experiment at the Droevendaal organic 

experimental farm of the Wageningen University, The Netherlands (Figure 4). UAV imagery has been 

acquired during the 2020 growing season by Ida Norazlida, a researcher at the Farm Technology 

Group at Wageningen University, and dr.ir. Lammert Kooistra. There were five types of crops, 

including wheat, barley, potato, cabbage, and pumpkin, during the flight campaigns. This research 

focussed on a pumpkin field. 

Figure 4. Map of the study area at the location of Droevendaal experimental farm in the Netherlands. The inset shows the 
UAV acquired RGB orthomosaic for the strip cropping field on 24-09-2020 

 

3.3. Data description and software 
 

3.3.1. UAV image acquisition 

For the aerial survey, eleven acquisition flights were conducted within the study area, as 

shown in Table 1 with the growth stages of the pumpkin plant. The platform of the DJI Matrice 210, 

equipped with the RGB camera Zenmuse X7 was used. A flight altitude of 25 m above ground level 

was chosen.  
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Table 1.Overview of UAV campaigns and the associated development stages for the pumpkin plant. 

UAV flight date Development stages 

1st July 2020 

Sprout 8th July 2020 

15th July 2020 

22nd July 2020 
Vine 

29th July 2020 

4th August 2020 

Flower development  13th August 2020 

28th August 2020 

11th September 2020 

Pumpkin development 24th September 2020 

7th October 2020 

 

All image-based datasets have been created by Ida Norazlida. Photogrammetric and image 

processing procedures were carried out using Agisoft Metashape software. The raw dataset was 

processed using a structure-from-motion (SfM) technique, in which the identification of common 

features in overlapping images was performed. For geo-referencing of the UAV images, a set of 12 

ground control points (GCP) were placed throughout the experimental plot. Following the geo-

referencing process, RGB orthomosaic images and digital surface models (DSM) were produced. 

Consequently, the dataset consists of DSM and RGB orthomosaic for each flight with a spatial 

resolution of 6 mm. This imagery shows great potential for crop mapping at very high resolution for 

this heterogeneous pumpkin field.  

 

3.3.2. Ground truth samples 

The first step was to examine the orthomosaics of each flight and make a selection of images 

in which pumpkins and pumpkin flowers are clearly visible. Since pumpkins and pumpkin flowers are 

not present in the early stages of growth, the last six dates of UAV campaigns from flowering to 

mature pumpkin were reviewed (Figure 5). Among the available dates, the pumpkin stands out in 

the last two flights. However, most of the pumpkins were harvested in October. Therefore, the 

image of September 24 was chosen for analysis because the pumpkin is more pronounced, and 

pumpkin flowers are present. 
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Figure 5. Illustration of RGB orthomosaics for dates from flowering to mature pumpkin development. 

 

For the image classification, three classes were defined as pumpkin flower, pumpkin, and 

background that includes both leaves and soil background for the image of September 24. A total of 

788 ground truth samples were manually labeled through the aid of QGIS. These samples were 

labeled considering location, area, shape, and color of classes. Table 2 presents a detailed 

description of the labeled object types for the three classes. The ground truth samples were 

prepared as vector points and carefully selected to ensure that all three classes are well 

represented.  
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Table 2. A detailed description of labeled object classes in the UAV-based RGB image. 

Object Type Images Description 
# of Sample 

Points 

Pumpkin Flower 

 
 
 
 
 
 
 
 

pumpkin 
flowers of 

different sizes 
and shapes 

247 

Pumpkin 

 

 

pumpkins of 
different color, 

sizes, and 
shapes 

228 

Background 

 

 

various and 
complex natural 
background for 
both leaves and 
soil background 

370 

 

3.3.3. Reference dataset 

Initially, the total time taken to process the entire scene for image segmentation in OTB was 

approximately 15 hours or 20 hours. In order to reduce the processing time, two regions of interest 

(ROI), as illustrated in Figure 6, were defined for both pumpkin and pumpkin flower to test several 

segmentation parameter settings. These regions were chosen based on areas that are representing 

the heterogeneity of the agricultural field, such as irregularity in shape and color of pumpkin and 

pumpkin flower objects and their overlap with leaves or stems. 

 Ten reference polygons were manually digitized for pumpkin and pumpkin flower objects in 

the selected ROI, as seen in Figure 6. Thus, the similarity between the reference polygons and 

segment polygons was examined to evaluate the segmentation quality and determine the optimum 

segmentation parameters. 
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3.4. Segmentation by LSMS 

LSMS segmentation algorithm was adopted to generate segment regions provided by the 

OTB software. OTB is an open source remote sensing image processing software developed by 

Centre National d’Etudes Spatiales (CNES) in France (OTB Development Team, 2018). The OTB LSMS 

segmentation procedure consists of four steps as LSMS-smoothing, LSMS-segmentation, LSMS-

merging, and LSMS-vectorization (Michel et al., 2015). It requires the setting of three parameters:  

• spatial radius (spatial distance between classes) 

• range radius (spectral difference between classes) 

• minimum size (merging criterion) 

LSMS segmentation was presented by Michel et al. (2015) as an efficient version of the 

mean shift segmentation, a non-parametric iterative clustering procedure by Comaniciu and Meer 

(2002). A detailed description of the LSMS algorithm is provided by Michel et al. (2015). 

The LSMS-smoothing step is a simple iterative procedure and the first step for image 

segmentation. The smoothing step shifts each pixel to the average spectral signature of 

neighborhood pixels that are spatially closer than the spatial radius parameter and with the spectral 

signature with a euclidean distance to the input pixel lower than the range radius. The LSMS-

segmentation step produces a labeled image where neighbor pixels whose range distance and 

spatial distance are below will be grouped into the same cluster. Each segmented region is then 

converted to a map of labeled objects.  

Figure 6. ROI identification with manually digitized reference polygons for pumpkin flower (a)  and pumpkin (b) 
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The third step (LSMS-merging) deals with merging small objects with larger adjacent objects 

that has the closest radiometry. The minimum size region parameter allows the specification of the 

threshold for the size (in pixel) of the regions to be merged. If the segment size is lower than this 

threshold, the segment is merged with the segment that has the closest radiometry. The final step is 

LSMS-vectorization, where the segmented image is converted to a vector file with one polygon per 

segment. 

In this work, the LSMS segmentation algorithm was applied to the two ROI separately using 

the UAV-RGB image of September 24. Spatial radius and range radius parameters were determined 

empirically by testing several segmentation settings. Starting from the default value of the spatial 

radius (5), the following values: 5, 10, 15, 20, and 25 were obtained. The range radius was calculated 

for the values between 5 and 50 with steps of 5 units.  

For the minimum size region parameter, a number of small pumpkins and pumpkin flowers 

were measured so as to determine a suitable threshold value. This parameter was constantly kept at 

100 pixels for pumpkin and pumpkin flower, as this number was the estimated minimum area of the 

pumpkin and pumpkin flower in pixel size. In this research, the script for the combination of 

different segmentation parameters was built in Python using the otbApplication package (OTB 

Development Team, 2018). This step yielded 50 segmentation results for pumpkin ROI and 50 

segmentation results for pumpkin flower ROI, giving in a total of 100 segmentation results (Table 3).  

 

 

Table 3. Parameter settings of the LSMS segmentation for both the pumpkin ROI  and pumpkin flower ROI. 

Test site spatial radius range radius minimum size 

Pumpkin ROI 5-10-15-20-25  5-50 incremented 

with 5 

100 

Pumpkin flower ROI 5-10-15-20-25 5-50 incremented 

with 5 

100 
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Evaluating the performance of the segmentation algorithm plays an important role in 

selecting optimal scale and obtaining better segmentation results for subsequent analysis (Marpu et 

al., 2010). In this study, two evaluation methods were carried out to assess the quality of the 

segmentation results, visual interpretation and comparison based on reference polygons.  

Many studies have examined the quality of image objects based on human visual inspection 

of image objects, and it is widely used for simplicity (Im et al., 2014). The visual interpretation was 

performed to describe the general segmentation result, such as delineation of targeted class and 

incorrect segmentation which might occur. At each setting, the segmented objects were first visually 

checked with the corresponding pumpkin and pumpkin flower object that could be easily 

interpreted in the image.  

Another method is to quantitatively assess image objects with the segmentation results and 

the reference dataset (Wang et al., 2020). The similarity between the reference dataset and the 

segmented results determines the quality of the segmented image (Cai et al., 2018). A more detailed 

evaluation was done by comparing the segmented polygons with reference polygons through 

overlap analysis. Overlap analysis was implemented to calculate the percentage cover by which 

polygons from the segmentation layer overlap polygons from the reference layer to examine how 

the segmented polygons matched the manually digitized reference polygons in this study. Overlap 

Analysis was performed by using QGIS.  

 

3.5. Feature extraction 

After image segmentation, image objects were used to calculate features. These features 

per segment were utilized as input for the image classification. Due to similar spectral responses 

between pumpkin and pumpkin flower, it is necessary to integrate spectral, texture, and spatial 

information to achieve better classification results. There are totally three types of features used in 

this study, including 1) spectral, 2) textural, and 3) geometric. The contribution of DSM and hue has 

proven high classification accuracy in the previous studies (Siebring et al., 2019; Yuba et al., 2021). 

Hence, DSM and hue were included in this work alongside RGB for feature calculation. 

Spectral features are far more frequently used for OBIA classification. Four statistical 

variables, brightness and yellowness index were computed for each segment (Table 4). The four 

statistical variables were extracted for each spectral band of RGB, DSM, and hue channel using the 

Zonal Statistics tool in QGIS. The brightness and yellowness index were calculated from RGB imagery.  
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Table 4. Description of spectral features. 

Feature 

Type 

Feature Name Description 

Spectral Mean The mean intensity values computed for an image segment of the 

RGB channels, Hue, and the DSM 

Minimum The minimum values computed for an image segment of the RGB 

channels, Hue, and the DSM 

Maximum The maximum values computed for an image segment of the RGB 

channels, Hue, and the DSM 

Standard 

Deviation 

The standard deviation values computed for an image segment of 

the RGB channels, Hue, and the DSM 

Brightness The average means of the RGB channels 

Yellowness 

Index 

𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛

2
− 𝐵𝑙𝑢𝑒 

 

In high spatial resolution images, texture features are important supplementary information 

(Lee et al., 2020). Textures provide information on the spatial distribution of tonal variations and 

image structure (Haralick et al., 1973). Pumpkin and pumpkin flower show similar spectral responses 

but different shapes and textures. The inclusion of textural data may help improve separability 

between different classes with similar spectral signatures but different structures (Lee et al., 2020). 

Gray level co-occurrence matrix (GLCM) is the most common statistical quantification 

method, and hence this study adopted the GLCM-based method for textural feature representation. 

The GLCM-based matrices are two-dimensional histograms of gray levels that show the probability 

of pixel pairs to co-occur in a given direction and at certain lag distances in an image. Eight GLCM-

based statistics were computed for all directions: 0°, 45°, 90°, 135°, as defined by Haralick et al. 

(1973). GLCM-based variables were computed for each spectral band of RGB, DSM, and hue channel 

in the R software (R Core Team, 2021) using the glcm package (Haralick et al., 1973). The texture 

statistics used were as follows. 
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𝑀𝑒𝑎𝑛 =  ∑ ∑ 𝑖 × 𝑃(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  ∑ ∑ 𝑃(𝑖, 𝑗) × (𝑖 − 𝑀𝑒𝑎𝑛)2

𝑁−1

𝑗=0

𝑁−1

𝑖=0

 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑ ∑
𝑃(𝑖, 𝑗)

1 + (𝑖 − 𝑗)2

𝑁−1

𝑗=0

𝑁−1

𝑖=0

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ ∑ 𝑃(𝑖 − 𝑗)2𝑃[𝑖, 𝑗]

𝑁−1

𝑗=0

𝑁−1

𝑖=0

 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑆𝑒𝑐𝑜𝑛𝑑 𝑀𝑜𝑚𝑒𝑛𝑡 =  ∑ ∑ 𝑃(𝑖, 𝑗)2

𝑁−1

𝑗=0

𝑁−1

𝑖=0

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  
∑ ∑ 𝑖𝑗𝑃[𝑖, 𝑗] − 𝜇𝑖𝜇𝑗

𝑁−1
𝑗=0

𝑁−1
𝑖=0

𝜗𝑖𝜗𝑗
 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑ ∑ − 𝑃(𝑖, 𝑗) ×  ln (𝑃(𝑖, 𝑗))

𝑁−1

𝑗=0

𝑁−1

𝑖=0

 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  ∑ ∑ 𝑃(𝑖, 𝑗) × |𝑖 − 𝑗|

𝑁−1

𝑗=0

𝑁−1

𝑖=0

 

where 𝑁 is the number of grey levels;  𝑃 is the normalized symmetric GLCM of dimension 𝑁 × 𝑁; 

𝑃 (𝑖, 𝑗) is the normalized grey level value in the cell 𝑖, 𝑗 of the co-occurrence matrix such that the 

sum of 𝑃 (𝑖, 𝑗) equals to 1 (Feng et al., 2015). 

Furthermore, geometrical features are expected to improve the discriminating of the 

pumpkin and pumpkin flower classes since they have different properties in shape and size. There 

are a variety of metrics to describe the shape information of a segment; this study selected eight 

frequently used variables according to previous studies (Gibril et al., 2020; Lee et al., 2020) (Table 5). 

Polygon shape indices tool, provided by QGIS, was implemented to generate geometric features.  
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Table 5. Description of geometric features. 

Feature 

Type 

Feature Name Description 

Geometric Length The length measure of the segment. 

Width The width measure of the segment. 

Area It is measured by the number of pixels contained in the segment. 

Perimeter The perimeter length of the segment. 

Maximum 

Distance 

Maximum diameter calculated as maximum distance between two 

polygon part’s vertices 

Shape Index A ratio that defines border smoothness of image objects and can 

be computed by dividing the border length of an image object by 

four times the square root of its area. 

Roundness It is expressed as the ratio of the area of the circle with a similar 

perimeter to the area of an image object. 

Compactness It is expressed as the ratio of the area of an image object to the 

area of a circle with a similar perimeter. 

 

 

3.6. Classification by Random Forest 

In this study, the RF algorithm was implemented and validated using R software (R Core 

Team, 2021) to identify pumpkin and pumpkin flower and evaluate feature importance.  

RF is an ensemble learning method that constructs multiple decision trees using random 

subsets taken from a training dataset through a bootstrap aggregating approach (Belgiu and Drăgu, 

2016). Each classification tree is constructed from a randomly selected set consisting of 

approximately two-third of the training dataset. The remaining one-third portion is referred to as 

out-of-bag observations (OOB). The OOB of error is calculated using a one-third portion of the 

samples that were randomly excluded from the construction of each of the classification trees and 

corresponded to the rate of misclassified samples (Lebourgeois et al., 2017). OOB error is internally 

estimated classification accuracy that allows to validate trees and is often used to measure the 

generalization error on the training samples. 
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Another important advantage of RF is that it can measure the importance of variables by 

randomly permuting the value of OOB samples for a certain variable, indicating how variables will 

influence overall accuracy (Feng et al., 2015). RF classifier usually uses two methods to measure the 

importance of variables. Mean Decrease Accuracy (MDA) is the average value of decreasing accuracy 

of features based on OOB assessment (Pal, 2005). Mean Decrease Gini (MDG) gives the value of 

decreasing Gini coefficient, and it is a measure of class homogeneity (Pal, 2005). The higher the MDA 

value, the more important this feature is. In this research, the MDA was used to quantify how useful 

spectral, texture and geometric features are for pumpkin and pumpkin flower identification.   

This paper has developed the RF classification model using the caret package (Kuhn, 2008). 

Tunning the RF algorithm is important in building the classification model to control the training 

process and hence gaining better results (Jauvin et al., 2019). In this study, two main tunning 

parameters in the RF model were estimated by repeated 10-fold cross-validation and grid search 

method. These parameters included the number of classification trees to be grown (ntree), and the 

number of prediction variables used in each node to make the tree grow (mtry).  

The collected ground truth samples were spatially joined to image objects after the optimal 

image segmentation scale was identified and feature extraction (Figure 7). To establish the RF 

model, a set of ground truth samples was randomly divided 70% for training and 30% for testing 

(Table 6). First, to train the RF model, 553 image objects were randomly selected to build the 

classification model. The established model was then validated using 235 image objects. Section 3.5 

presents all the 70 variables are used in the RF classification. Additionally, the importance of 

features was analyzed and compared to assess how spectral, textural, and geometric features 

impact classification accuracies based on the feature ranking output. 
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Table 6. Total number of training and validation objects per class. 

Class Training objects  Testing objects  

background 218 93 

flower 181 77 

pumpkin 154 65 

Total 553 235 

 

Then the established RF model was used to predict pumpkin and pumpkin flower. Other 

agricultural land covers (leaves, stems, soil background) happening in the pumpkin field were also 

identified. The final map will provide a visual depiction of the spatial distribution of the pumpkin and 

pumpkin flower over the agricultural field.  

 

 

Figure 7. Spatial distribution of ground truth samples for training and testing purposes. 
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3.6.1. Accuracy assessment 

The validation of the RF model was carried out by doing a 10-fold cross-validation approach. 

This approach randomly partitions the validation objects into 10 equal subsamples. The first 

subsample of objects was used for testing the model and the remaining for training. Then the model 

was tested and trained 10 times. Each time a confusion matrix was stored in a list, then the elements 

in the list were calculated and combined into a final confusion matrix. 

 An accuracy assessment to evaluate the RF model was reported through Overall accuracy 

(OA), producer’s accuracy (PA), and user’s accuracy (UA) derived from the confusion matrix. A 

description of the confusion matrix and the metrics that can be derived from it can be found in 

Congalton (1991). 

The overall accuracy is the ratio between the number of correct predictions and the total 

number of observations.  

𝑂𝐴 =  
∑ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

where predictions were computed for all available validation objects, and the predicted 

classes were compared to the true classes. 

The producer’s accuracy value represents how well observed pixels have been classified. It is 

derived by dividing the number of correct pixels in one class by the number of reference pixels to be 

of that category.  

The user’s accuracy is a measure of the probability that a pixel classified into a given 

category actually represents on the ground. It is computed by dividing the number of correctly 

classified pixels in a class by the total number of pixels that were classified in that class. 
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4. Results 

 

4.1. LSMS segmentation  

Appropriate segmentation parameters are crucial to achieve a good segmentation result. 

The selection of appropriate segmentation parameters procedure is as follows: (1) define the testing 

ranges and the increments in every iteration for each parameter (e.g., spatial radius: 5 to 25 with an 

increment of 5 each time; range radius: 5 to 50 with an increment of 5), the minimum size 

parameter was kept constant at 100 pixels for pumpkin and pumpkin flower; (2) segment the image 

with each parameter combination (5 × 10 × 1 segmentations in two selected ROI); and (3) evaluate 

the segmentation quality of each result to select the suitable parameters. For this process, each 

outcome of the whole iteration procedure was assessed first using a trial-and-error approach with 

visual interpretation and then overlap analysis. 

In general, segmentation errors can be characterized as over-segmentation and under-

segmentation to specify the segmentation quality. Over-segmentation happens when a single object 

is segmented into smaller sub-objetcs; and under-segmentation occurs when many objects are 

segmented into a single segment (Marpu et al., 2010). These metrics are utilized to assess the quality 

of segmentation by comparing the similarity of image objects with segmented objects (El-naggar, 

2018). Mismatching between segmented objects and image objects can lead to irrelevant calculated 

properties. In such cases, the classification model may fail to predict the class of segment objects. 

Therefore, image segmentation is a critical step, as segments that match the reference objects 

provide higher classification accuracy. 

The LSMS image segmentation algorithm was tested with 50 different parameter settings in 

the pumpkin ROI and 50 different parameter settings in the pumpkin flower ROI. For some settings, 

the segmentation results seem to provide irregular segments. Low spatial and range radius values 

yielded many small polygons (over-segmentation), being not able to capture the pumpkin and 

pumpkin flower correctly. However, an increase of the spatial radius and range radius parameter led 

to larger polygons, which resulted in under-segmentation case. As shown in the Figure 8, segment 

polygons cannot adequately represent pumpkin and flower objects because of over-segmentation. 

In addition, flower was merged with leaves and pumpkin was also merged with stems and part of 

the leaves as a consequence of under-segmentation. This resulted in wrongly placed boundaries for 

pumpkin and pumpkin flower (Figure 8). These cases are not suitable for this study if it applies to the 

whole study area because very small segments and too large segments are causing confusion in the 

classification step. 
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After visual interpretation of each setting, the segmentation evaluation through overlap 

analysis was carried out based on 10 reference objects for each pumpkin and pumpkin flower per 

ROI. The similarity was evaluated between the reference polygons and the segmented polygons 

derived from each setting. A good quality of segmentation result is reached when the difference 

between the segmentation polygons and reference polygons is low. 

It can be seen that segmentation results with spatial radius=10  and range radius=15 and 

with spatial radius=25 and range radius=50 do not adequately cover the reference polygons (Figure 

9). As a result, the difference between the segmented polygons and reference polygons is not small. 

 

 

 

 

Figure 8. A section of study area showing segmentation results with spatial radius=10  and range radius=15 (left) and with 
spatial radius=25 and range radius=50 (right). 
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The evaluation based on overlap analysis demonstrated that segmentation with spatial 

radius = 20 and range radius = 40 for pumpkin and pumpkin flower has successfully segmented the 

targeted objects with the overall difference between the references and the segmentation polygons 

is small (Figure 10). At this setting, the image is segmented at a finer scale, and hence these values 

were selected as suitable parameters for LSMS segmentation. 

 

 

Figure 9. Overlap between reference polygons and segmented polygons generated from spatial radius=10  and range 
radius=15 (up) and with spatial radius=25 and range radius=50 (bottom). 
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4.2. Random Forest classification 

After the image segmentation process providing the objects to be classified, the RF model 

was established using training objects. The RF classifier with the optimal combinations of mtry and 

ntrees was identified by tuning parameters and training iterations. The best model had mtry value of 

10 and ntree value of 1000 trees with the OOB estimate of error of 1.76%. This estimate of error is 

expressed as the number of misclassifications in the training set divided by the total number of 

observations.  

After training the RF model, an accuracy assessment was performed to validate the 

classification model with the testing objects. The confusion matrix and the final model performance 

metrics are depicted in Figure 11 and Table 7. The result showed that the object-based classification 

of the UAV-RGB image achieved a satisfactory result, in which OA is 0.94. All three classes reveal a 

well-balanced user’s and producer’s accuracy. The most accurately predicted class is a flower with 

producer’s accuracy of 0.98 and user’s accuracy of 0.97, followed by background and pumpkin. 

Among the classes, pumpkin has the lowest producer’s accuracy and user’s accuracy with 0.88 and 

0.90, respectively. This is because six pumpkin objects were mistakenly classified as background, and 

two pumpkin objects were mistakenly classified as a flower. 

 

Figure 10. Overlap between reference polygons and segmented polygons generated from spatial radius of 20, range 
radius of 40, and  minimum segment size of 100. 
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Table 7. Model performance 

 Producer's accuracy User's accuracy 

background         0.94 0.93 

flower                        0.98  0.97 

pumpkin   0.88 0.90 

Overall Accuracy = 0.94 

 

 

As a next step, the RF model was applied to the rest of the segmented objects in the whole 

image and assigned classes to all derived objects. Figure 12 presents the map produced through the 

LSMS segmentation-RF model by using the spectral, textural, and geometric features from the UAV-

RGB image. This classified map allows for the identification of the pumpkin and pumpkin flower.  

 

 

 

Figure 11. Confusion matrix. 
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The main challenges for pumpkin and pumpkin flower detection are the heterogeneous 

canopy, which causes overlapping of leaves and stems and obscures the sight of pumpkin and 

pumpkin flower. Despite different representations of the pumpkin and pumpkin flower because of 

these challenges, the majority of clearly visible pumpkin and pumpkin flower were correctly 

classified based on the OBIA-RF classification model (Figure 13). Especially in the non-overlap areas 

of the pumpkin and pumpkin flower, they were classified precisely in size and shape. From visual 

interpretation, the disadvantage of salt-and-pepper effects from pixel-based methods is mostly 

eliminated in Figure 13 because OBIA treats the image in segments rather than individual pixels. 

 

 

 

 

 

 Figure 13. A subset from the study area for clear observation of non-overlap areas. (left) subset from the original image, (middle) segmentation 
result, (right) classification result. 

Figure 12. Classified map of RGB image using OBIA-RF classifier. 
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However, pumpkin and pumpkin flower with overlapping areas were not adequately 

recognized, which were not represented pumpkin and pumpkin flower in size and shape (Figure 14). 

Frequently, it was also observed that nearby pumpkins were merged into single segmented objects, 

causing them to be classified as one object. The reason for these mismatches is that this pumpkin 

and pumpkin flower was partly covered by leaves. 

 

 

 

 

 

 

 

 

 

In some cases, pumpkins were hidden under leaves, causing pumpkin objects to be 

mistakenly classified as background (Figure 15). It was also observed that some brightly colored 

small leaves were mistakenly classified as pumpkins. The main reason for these misclassifications is 

the high heterogeneity of the pumpkin field. 

 

 

 

 

 

 

 

 

Figure 14. A subset from the study area for clear observation of pumpkin and pumpkin flower mismatches. (left) subset from the original image, 
(middle) segmentation result, (right) classification result. 

Figure 15. A subset from the study area for clear observation of overlapping areas. (left) subset from the original image, (middle) segmentation 
result, (right) classification result. 
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4.2.1. Variable importance 

After extracting image objects, a total number of 70 features, including spectral, textural, 

and geometric features were computed. The variable importance allows determining what features 

are most important for pumpkin and pumpkin flower identification. See Appendix A for a detailed 

graph of the variable importance of all the input variables.  

To further investigate the value of variables for classification, the 30 most important 

variables according to the MDA of input variables given by RF is depicted in Figure 16. It is obvious to 

note that spectral features contributed the most among the three feature types. Textural and 

geometric features also made useful contributions to the RF classifier. 

 

 

 

 

 

 

 

Figure 16. The top 30 variables rated by importance score in the RF classification algorithm. 
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Figure 16 shows that spectral reflectance values and indices were largely predominant. The 

best spectral feature and the most important feature is the yellowness index which is mainly 

because the spectral response of pumpkin and pumpkin flower is higher in the Red and Green bands 

than in the Blue band. From the calculated statistical variables for spectral features, mean, maximum 

and minimum values have the higher importance. 

On the other hand, the contribution of textural features is noticeable as compared to 

spectral features. The dominant variables in the textural feature type are the mean and the variance 

values. The contribution of Red and Green channels for textural features was higher than the Blue 

channel. It can be noticed that some geometrical variables give high values and that the resulting 

additional information for pumpkin and pumpkin flower identification.  

What is more, the result shows that the contribution of RGB bands to classification accuracy 

is generally higher than that of DSM and hue bands. In the RGB bands, the Green and Red bands 

have much higher importance than that of the Blue band, which is mainly because of spectral 

reflectance in the pumpkin field (see Section 2.1).  

In summary, spectral features were the most influential in this study, and they were 

recommended for other related research. Aside from spectral features, textural features had 

distinctively high importance, which supported the usefulness of OBIA. Geometric features should 

be used with discretion since in this experiment, the importance of the geometric feature types was 

demanding attention. 
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5. Discussion 

 

5.1. Image segmentation  

The first research question was to identify and test the image segmentation algorithm in 

order to describe suitable segmentation parameters. For the identification and delineation of 

pumpkin and pumpkin flower in UAV imagery, the LSMS segmentation algorithm was developed 

based on OBIA workflow. Defining a suitable image segmentation to generate image objects is key 

for achieving a successful image analysis (Im et al., 2014). 

The LSMS segmentation algorithm was tested in the selected ROI for pumpkin and pumpkin 

flower using the UAV-RGB data. The outcomes of different settings were evaluated through visual 

interpretation and overlap analysis. Since visual interpretation is a subjective task, reference 

polygons were defined to avoid errors that can arise during the segmentation process. In this study, 

overlap analysis was carried out to calculate the similarity between segmented polygons and 

reference polygons.  

Over and under segmentation are a highly important issue in the segmentation process 

(Johnson and Xie, 2011). Similar to the work performed by Oldeland et al. (2021), the irregular 

behavior of the over-segmentation and under-segmentation was observed. They evaluated that an 

increase in the spatial radius and range radius parameters led to increasingly larger polygons, 

whereas low spatial radius and range radius values resulted in many small polygons.  

Optimal LSMS segmentation parameters were determined the value of 20 for spatial radius, 

the value of 40 for range radius, and the value of 100 for minimum segment size. The segmentation 

outcome from this setting was highly representative for the pumpkin and pumpkin flower objects 

with reference polygons, as indicated in the Figure 10. 

The optimal parameter setting found in this study is more or less similar in comparison to 

LSMS scale settings found in other studies. Most of the studies have obtained minimum size 

parameters by measuring a number of smaller targeted objects. De Luca et al. (2019) and Duarte et 

al. (2020) found parameter settings similar method by visual comparison on a different dataset. In 

addition, Siebring et al. (2019) calculated convex hulls for estimating spectral threshold, and they 

found range radius =30 and spatial radius=10. 
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Image segmentation is still a challenging task in OBIA. In this sense, the image segmentation 

process strongly depends on the image data and the purpose of the study. Since there is no standard 

and unique solution for the determination of the right parameter values, the segmentation 

continues to be a highly interactive and subjective procedure (Kotaridis and Lazaridou, 2021). 

Therefore, this process requires user’s intervention to distinguish the different classes involved in 

the classification problem and must be done carefully.  

A study presented by Kotaridis and Lazaridou (2021) demonstrated that almost 50% of 

segmentation evaluation methods rely on a qualitative visual interpretation of image objects. Similar 

efforts have been provided by Im et al. (2014). They reviewed a total of 76 publications in OBIA and 

examined the use of the segmentation scale in those publications. They found that the qualitative 

visual interpretation approach is a widely adopted method for the selection of optimum 

segmentation scale. While a simple visual interpretation approach is still commonly used to describe 

appropriate segmentation parameter values, a comprehensive guide should be conducted to 

provide the appropriate segmentation parameter value for the most used segmentation algorithms. 

Therefore, improvements related to optimum segmentation scale selection in OBIA within the 

remote sensing field should be made in the near future. 

 

5.2. Classification results 

This study explored the capability of object-based image classification in identifying pumpkin 

and pumpkin flower using the UAV-RGB imagery. The classification results indicate that the potential 

of the object-based approach in order to map pumpkin and pumpkin flower in the heterogeneous 

agricultural field. 

In this research, the RF algorithm was used for object-based image classification. Although 

previous studies have implemented the RF algorithm with the default mtry number (square root of 

the number of input variables) and ntree (500), this thesis has optimized those parameters by tuning 

the RF algorithm (mtry= 10 and ntree=1000). 

For complex and heterogeneous pumpkin field, the object-based image analysis method 

provided results with statistically significant high accuracy of overall accuracy 0.94 (Table 7). The 

result of this study shows higher accuracy in comparison to other studies. For example, Su and Zhang 

(2021) introduced an object-based RF classification framework for crop classification. Their results 

showed an overall accuracy of 90.52% with six classes. Furthermore, this study confirmed the 
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efficiency of RF classifier for crop mapping already reported in the literature (Li et al., 2015; Novelli 

et al., 2016). 

Recently, Wittstruck et al. (2021) reported a methodology to detect and count pumpkin 

fruits for yield prediction using high spatial resolution UAV-RGB imagery. The issue of overlapping 

and adjacent pumpkin fruits were addressed by conditional and thresholding strategy to split those 

fruits. In this study, the attempt to identify pumpkin and pumpkin flower in the complex and 

heterogeneous agricultural field has been fairly successful, especially in areas where pumpkin and 

pumpkin flower stand with a single object and clearly visible. This study can be served as a step for 

more sophisticated research into crop classification in the heterogeneous and complex agricultural 

field.  

One of the advantages of object-based classification over pixel-based classification is the 

ability to use additional features instead of analyzing only spectral information. Due to the 

availability of a large number of feature variables under the OBIA approach, selecting suitable 

features is important. This study highlights the most useful features for classifying pumpkin and 

pumpkin flower. Three types of features were extracted from each object, and a total of 70 feature 

variables were used in the RF classifications. Based on the importance of variables, spectral features 

proved to be useful for the pumpkin and pumpkin flower classification. The inclusion of texture and 

geometric features has provided information on the object classification that is complementary to 

spectral information, which is consistent with the findings of other studies (Gibril et al., 2020; Song 

et al., 2017).  

 

5.3. Limitations 

It is essential that the training data provide a representative description of each class to 

describe the image objects of the study area (Ma et al., 2015). Machine learning algorithms also 

require a larger number of training data for better performance (Rodriguez-Galiano et al., 2012). 

However,  the collection of ground truth samples takes a great amount of time and effort.  

The available UAV dataset is also limited for pumpkin identification. Among the available 

UAV images, pumpkins are more prominent only in the selected image. Therefore, a classical 

method from the machine learning field was chosen. The RF algorithm was chosen because it was 

successfully applied in the object-based image classification task. 
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6. Conclusions 

In the past decades, methods for crop classification from UAV imagery have seen rapid 

advancement. Although the object-based image classification approach has been proven to provide 

promising results, this approach still continues to rely on user-driven knowledge because the choice 

of segmentation parameters requires human interpretation in some steps. Therefore, subjective 

assessment is a very cumbersome and time-consuming process. However, in this study, the 

combination of visual interpretation and overlap analysis allowed a more objective assessment of 

the suitability of parameter settings. 

This study combined the OBIA approach and the RF machine learning method based on  UAV 

data. The objective was to identify pumpkin and pumpkin flower in the heterogeneous and complex 

pumpkin field by determining the optimal segmentation scale and important features for 

classification. The OBIA-RF approach adopted in this study was found to be suitable for crop 

mapping in heterogeneous and complex farmland. The map of pumpkin and pumpkin flower could 

provide helpful information that can be used in decision-making systems to guide farmers for 

management and economic purposes.  
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Appendix 
 

A. Variable importance of all input variables rated by mean decrease accuracy 

with the RF classification algorithm. 
 

 

 

 


